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LEARNING AND ACYCLICITY IN THE MARKET GAME1

ARTHUR DOLGOPOLOV2

Department of Economics, European University Institute3

CESAR MARTINELLI4

Interdisciplinary Center for Economic Science, George Mason University5

Abstract. We show that strategic market games, the non-cooperative implemen-

tation of a matching with transfers or an assignment game, are weakly acyclic.

This property ensures that many common learning algorithms will converge to Nash

equilibria in these games, and that the allocation mechanism can therefore be de-

centralized. Convergence hinges on the appropriate price clearing rule and has

different properties for better- and best-response dynamics. We tightly characterize

the robustness of this convergence in terms of so-called schedulers for both types of

dynamics.

1. Introduction6

Convergence to pure Nash equilibria is considered a fundamental problem for at7

least two reasons: distributed computation of equilibria, and robustness in the sense8

that simple agents will reach these outcomes by trial and error. Matching and as-9

signment games (Shapley and Shubik, 1971) have been shown recently to converge10

for different evolutionary dynamics, but these results are embedded in a cooperative11
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2 A. DOLGOPOLOV AND C. MARTINELLI

framework and are defined in terms of an explicit process of forming and breaking1

coalitions. We complement this analysis by putting the problem in a non-cooperative2

framework and show that a strategic market game (Dubey, 1982; Simon, 1984; Be-3

nassy, 1986) – in which strategic players bid competitively and publicly for a set of4

indivisible goods – is also weakly acyclic, converges to Nash equilibrium under mild5

assumptions, and can therefore be decentralized. A notable difference in approaches6

is that in a market game the set of equilibria is larger than the competitive outcomes7

of an assignment game, and players may converge to inferior semi-Walrasian outcomes8

of Mas-Colell (1982).9

Convergence property depends on the choice of dynamics, the process according10

to which agents update their strategies. A natural dynamic to consider for a non-11

cooperative game is a better- (best-) response dynamic. Under this process players12

sequentially (one by one, in random order) shift to one of the better (best) responses13

to the current action profile. A sufficient condition for convergence of better-response14

dynamics is weak acyclicity : for any profile there is a path of better responses leading15

to a pure Nash equilibrium.16

Many important classes of games exhibit weak acyclicity including all generalized17

ordinal potential games (Monderer and Shapley, 1996). The closest results to this18

paper, however, lie in the cooperative game theory literature that directly studies19

matching problems. Convergence has been shown for models of two-sided matchings20

with non-transferable utility (Ackermann et al., 2011), and moreover a subset of21

stochastically stable outcomes can be easily identified (Newton and Sawa, 2015).22

Convergence for transferable utility matchings and assignment games under different23

plausible dynamics has also been shown in multiple studies (Klaus et al., 2010; Chen24

et al., 2010; Nax et al., 2013; Klaus and Newton, 2016) and refined to stochastic25

stability under perturbed dynamics (Klaus and Newton, 2016; Nax and Pradelski,26

2015). Nax (2019) shows the results for uncoupled dynamics where players have27



LEARNING AND ACYCLICITY IN THE MARKET GAME 3

no information about other players’ payoffs. The analysis in (Nax and Pradelski,1

2015) is particularly close to the present paper and our proofs largely follow the same2

path with two important differences. Since we refine weak acyclicity and state the3

results in terms of schedulers (discussed below) we have to construct the path to4

the equilibrium explicitly, while the weak acyclicity considered by Nax and Pradelski5

(2015) only requires showing that some path exists. The second difference is that, due6

to our non-cooperative framework and different rematching process, the latter does7

not have to converge to the core (please see Appendix B for the exact characterization8

of equilibria).9

The convergent process can also be seen as similar to the mechanism in Demange10

et al. (1986) but there is a subtle difference. To show convergence, we need to show11

acyclicity not only on path or in the main phase of the mechanism in Demange et al.12

(1986), but also everywhere off the equilibrium path, including the profiles where13

buyers are bidding too much and for possibly suboptimal items. In particular we14

must consider the cases where the highest bidding buyers switch goods, even though15

this would never happen if the game started at zero prices and proceeded according16

to the best-response dynamics. This is because we want to guarantee convergence17

of perturbed learning algorithms that explore the strategy space and learn through18

experimentation, and thus reach any outcome within the strategy space with positive19

probability. In fact the game is likely to start at a Nash equilibrium; no-trade is20

(usually) also a Nash equilibrium. It is crucial therefore to explore convergence of21

algorithms that involve some experimentation, so that they would be able to move22

between the sinks of best responses that are Nash equilibria, and would be able to23

start trading.24

It is possible to refine weak acyclicity for both better and best responses. Apt and25

Simon (2015) provide a classification of refinements of weak acyclicity up to finite26

improvement property (i.e. potential games), introducing different schedulers for the27
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classes in between. A scheduler is a function that somehow selects a player who can1

shift to a better response in each profile to get out of best- or better-response cycle.2

The complexity of this function (and the respective class of schedulers) indicates3

robustness of the dynamic process. For example, a local scheduler only requires4

that an agent is selected at each profile according to some fixed arbitrary order (e.g.5

bargaining power of agents). A state scheduler is more general, and can select the6

deviating player based on the information from the state of the game (action profile),7

e.g. the player with the highest payoff etc. Therefore, if a game requires a state8

scheduler and does not admit a local scheduler, convergence in this game is, in this9

particular sense, less robust.10

The concept of a scheduler is also attractive because it indicates how difficult it is11

for the agents to choose the improvement path that leads out of cycles and towards the12

equilibrium. A set-based scheduler would indicate that this process only requires that13

agents act in a particular order (for a local scheduler) or, at least that the deviating14

agent is chosen independently of the action profile (for a general set scheduler).15

We place both better and best responses for market games within the classification16

of Apt and Simon (2015). For better responses we show that only the most general,17

state scheduler exists. For best-response dynamics we can claim a stronger result;18

that a market game admits any local scheduler. In other words, as long as the order19

of deviations is predetermined (e.g. implicitly by bargaining power of the players or20

in any arbitrary way) convergence is guaranteed.21

The paper is organized as follows. The next section introduces the definitions of22

the market game, the schedulers and related concepts. The third section contains23

the main results for convergence and counter-examples and is split into two parts for24

best-response and better-response dynamics. Finally the last fourth section discusses25

an alternative market clearing rule and concludes. Since proofs are constructive and26
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notation-heavy, they are collected in Appendix A. Appendix B characterizes Nash1

equilibria, the sinks of the convergent dynamics, in terms of competitive outcomes.2

2. Preliminaries3

2.1. Strategic market games. Let B and S denote respectively the sets of buyers4

and sellers, with |B| = N and |S| = M . Each seller has one good to sell, and therefore5

we use S for the set of goods as well. Each buyer j has a valuation for each seller’s6

good i, denoted by hij, while each seller has a reservation value for his own good7

ci > 0. We refer to {h, c} as an economy. We will call a smaller economy {h′, c′}8

restricted to goods S ′ ⊂ S in a natural way with hij = h′ij and c′i = ci for all i ∈ S ′9

and j ∈ B a subeconomy for goods S ′.10

We will use i for a representative seller, j for a buyer, and k for some player, either11

a buyer or a seller. In the strategic market game each seller i ∈ S submits a price12

pSi ∈ R+, and each buyer submits an index of a seller mj ∈ S and a positive bid for13

her good. We will write the buyer’s action as an M -vector with at most one strictly14

positive element, pBj ∈ RM
+ , p

B
j = (pB1j, ..., p

B
Mj). We also implicitly define mj(p) as a15

function that gives the good that the buyer j is bidding for in profile p. Note that16

she does not necessarily obtain this good in p.17

The set of admissible prices/bids for player k ∈ B ∪ S is denoted Ωk. These sets18

are finite with bids and prices chosen on a grid with ε between consecutive values.19

We will assume without loss of generality that ε = 1 and bids and prices therefore20

have to be integers, Ωk ⊂ Z for all k. Likewise all hij ∈ Z for all i ∈ S and j ∈ B.21

An action profile combines actions of all players p = (pB1 , . . . , p
B
N , p

S
1 , . . . , p

S
M) ∈22

Ω =
∏

k∈B∪S Ωk. The action of a generic player k is just pk. For simplicity dominated23

actions – bids above valuations and seller prices below costs – are not allowed and24

are excluded from Ωk and Ω.25
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Once all bids and prices are submitted, a clearing house chooses an assignment in1

the feasible set2

X = {(x11, . . . , xNM) : xij ∈ {0, 1},
∑
j∈B

xij ≤ 1 for all i ∈ S}.3

The clearing house allocates trade to maximize surplus4

Ξ(x, p) =
∑
i∈S

∑
j∈B

xij(p
B
ij − pSi ).5

In other words, it draws from the following set of surplus-maximizing assignments:6

Π̄(p) = {x ∈ X : Ξ(x, p) ≥ Ξ(x′, p) for all x′ ∈ X}.7

To ensure that the clearing house prefers more trade even when arbitrage is zero,

we assume that it chooses assignments that are not ray-dominated (Simon, 1984):

Π(p) = {x ∈ Π̄(p) : there is no x̂ ∈ Π̄(p) such that

x̂ 6= x and x̂ij ≥ xij for all i ∈ S, j ∈ B}.

Once the clearing house chooses an assignment x, the market clears at the respective8

prices of buyers and sellers. That is, the payoffs are defined by the following rule that9

we call s-prices:10

(s-prices) uBj (p, x) = max
i∈S

(xijhij)−
∑
i∈S

pBijxij and uSi (p, x) =
∑
j∈B

(pSi − ci)xij.11

We will discuss the alternative market clearing rule (and why it does not work) in12

the last section.13

2.2. Dynamic components. The following definitions are taken from Apt and Si-14

mon (2015). An action p′k of player k is a better response from an action pro-15

file p if uk(p
′
k, p−k) > ui(pk, p−k) and a best response from an action profile p if16
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uk(p
′
k, p−k) ≥ uk(pk, p−k) for all p′k ∈ Ωk. A path in Ω is a sequence (p1, p2, ...) of1

action profiles such that for every l > 1 there is a player k such that pk = (p′k, p
l−1
−l )for2

some p′k 6= pl−1
k . Player k is then said to have deviated from pl−1. A path is called an3

improvement path (a best response improvement path, shortened to BR-improvement4

path) if for all l > 1, plk is a better (best) response to pl−1
−k , where k is the player who5

deviated from pl−1. The sets of improvement paths and BR-improvement paths from6

a profile p are written as P(p) and PBR(p).7

Following Young (1993); Milchtaich (1996), and Apt and Simon (2015) we say8

that the game has the finite improvement property or FIP (respectively, the finite9

best response property, FBRP) if every improvement path (BR-improvement path)10

is finite. The class of games with FIP is exactly the class of generalized ordinal11

potential games (Monderer and Shapley, 1996). A strategic market game is weakly12

acyclic (respectively, BR-weakly acyclic) if for any action profile there exists a finite13

improvement path (BR-improvement path) that starts at it.14

A scheduler (denoted f) is a function that given a finite sequence of profiles p1, ..., pk15

that does not end in a Nash equilibrium selects a player who did not select a best16

response in pk. That is, the scheduler defines the rule of picking the next deviating17

player at each profile with the goal of avoiding cycles. A BR-scheduler is a scheduler18

applied to BR-improvement paths. We will say f(p) = ∅ if p is a Nash equilibrium.19

We say that an improvement path ρ = (p1, p2...) respects a scheduler f if for all20

l < |ρ| we have pl+1 = (p′k, p
l
−k) where f(p1, ..., pl) = k. We say that a strategic21

game respects a scheduler f if all improvement paths ρ that respect f are finite, and22

similarly for a BR-scheduler.23

We now define different kinds of schedulers from less to more restrictive.24

A scheduler f is state-based if for some function g : Ω→ N we have25

f(p1, ..., pl) = g(pk).26
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This is the most general class of schedulers, i.e. all schedulers are state-based.1

The function g : 2(S∪B) → (S ∪ B) is a choice function if for all A 6= ∅ we have2

g(A) ∈ A. A scheduler f is set-based if for some choice function g:3

f(p1, ..., pl) = g(NBR(pl)).4

Finally, a set-based scheduler f is local if g also satisfies5

g(A) ∈ B ⊆ A =⇒ g(A) = g(B).6

A local scheduler f can be equivalently defined in terms of some strict total order7

≺f :8

f(p) = k ∈ {k ≺f k′,∀k′ ∈ I(p)}.9

That is, deviating players are chosen according to some predefined priority rule1.10

Since ≺f is a strict total order, such k is unique. We will also write j �f k for11

“j ≺f k or j = k”.12

Apt and Simon (2015) provide a classification of refinements of weak acyclicity up13

to finite improvement property (i.e. potential games) using the schedulers defined14

above with inclusions as follows:15

FIP

(potential

game)

Local Set State WA

FBRP LocalBR SetBR StateBR BRWA

16

1Using ≺f for a local scheduler is without loss of generality by Proposition 1 in Apt and Simon
(2015), where this order is captured by permutation π.
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It will be convenient to talk about schedulers in terms of potentials. A function F1

is an f -potential iff for all k ∈ B ∪ S, and p′i, p ∈ Ω:2

if f(p) = k and uk(p
′
k, p−k, π(p′k, p−k)) > ui(pi, p−i, π(pi, p−i)), then3

4

(p′i, p−i) < F (pi, p−i).5

A scheduler can be thought of as giving “priority” to some set of players, either6

sellers or current top bidders etc. Denote the set of players who are not playing a best7

response in profile p by I(p). We will say that a scheduler (BR-scheduler) prioritizes8

some set of players ↑f (p) over another set of players ↓(p) if f(p) /∈ ↓(p) whenever9

I(p) ∩ ↑(p) 6= ∅. For a local scheduler f with an associated strict total order ≺f this10

implies that k ≺f k′ for any k ∈ ↑(p) and k′ ∈ ↓(p), and for all Ω. For example, with11

↑(p) = S and ↓(p) = B and i ≺f j for any i ∈ S and j ∈ B the scheduler f prioritizes12

sellers over buyers. Notice that ↑ and ↓ can also be functions of the profile, e.g. the13

set of top bidders. We will thus, with abuse of notation, write ↑(p) ≺f ↓(p) meaning14

that given a profile p, f prioritizes ↑(p) over another set of players ↓(p) even if f is15

not local.16

2.3. Tie-breaking assumptions. Nash equilibria of a market game can include ties,17

and thus h and c are not by themselves enough to define a market game. We assume18

that the clearing house chooses the buyer in any tie in Π(p) by randomizing over19

the full support. Only the buyers who obtain the good in the realized outcome pay20

its price. Every seller i has a weight for buyer j denoted by πij. The probability of21

obtaining a good i by any buyer j at her winning bid pBij is proportional to the seller’s22

weight for this buyer. In other words it equals23

πij∑
j′∈B,pB

ij′=p
B
ij
πij′

.24
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The probability of any outcome x ∈ Π(p), denoted by Pr(x|p), is then the product1

of these expressions. Note that the clearing house is free to break ties differently for2

each seller, or, in other words, sellers can break ties themselves according to their own3

unique vectors of weights. We will denote the expected utility of player k in profile4

p by Uk(p) = Uk(pk, p−k) =
∑

x∈Π(p) Pr(x|p)u(p, x), where p−k are offers of all sellers5

and all other buyers B \ k.6

We assume a small level of risk-aversion to make sure that two players with equal7

valuations hi for the same good i would not tie for it at a price hi − 2, i.e. two steps8

away from the competitive price. The following assumption says that in this case,9

each of them prefers to take the good for herself definitively by bidding 1 more, even10

though the payoff is the same in expectation.11

Assumption 1. Buyers exhibit risk-aversion when they compare two outcomes of12

equal expected utility. In other words, any buyer j prefer p to p′ if either Uj(p) > Uj(p
′)13

or Uj(p) = Uj(p
′) and |Π(p)| < |Π(p′)|.14

Although tie-breaking issues can generally expand the set of Nash equilibria of15

a market game, they can be contained quite well. It only affects the prices in the16

negligible manner, and does not to affect the matchings at all as long as we make17

sure that the valuations are no more coarse than the possible bids:18

Assumption 2 (Coarsness). The action space is at least two times less coarse than19

the valuation space, i.e. for any i ∈ S and j ∈ B, hij = 2z, for some z ∈ Z.220

The assumption says that the currency medium is smaller than the minimal amount21

required to represent the smallest relevant payoff difference and allows one to compare22

some tied outcomes as well.23

2To see why this assumption is necessary please consult Appendix B, which contains two theorems
characterizing equilibria with and without the assumption.
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3. Convergence results1

3.1. Best responses. We first show that even when agents are restricted to best2

responses, the market game is not generally a potential game. In all examples assume3

the ties to be broken uniformly.4

We cannot hope to achieve convergence unless we force sellers to adjust their ac-5

tions before the buyers for the same reasons that we have defined s-prices to be the6

market clearing rule (see the discussion section for the counterexample). We will7

show a stronger counterexample here; even if we restrict sellers to always move before8

buyers when they have a better response, the game does not necessarily converge.9

An example of such a game that does not have a BR-potential, i.e. does not satisfy10

FBRP, is below.11

Example 1. Market game that has no FBRP.12 2 2 2 8 10 6
2 2 2 8 6 10
2 2 2 6 10 8

 1
1
1


valuations h costs c

b4 b5 b6 s1 s2 s3

b1
4 b

2
4 b

3
4 b

1
5 b

2
5 b

3
5 b

1
6 b

2
6 b

3
6

3 0 0 4 0 0 0 0 4 4 2 4
0 3 0 4 0 0 0 0 4 4 2 4
0 3 0 4 0 0 0 0 4 4 3 4
0 3 0 4 0 0 0 4 0 4 3 4
0 3 0 4 0 0 0 4 0 4 4 4
0 3 0 4 0 0 0 4 0 4 4 2
0 5 0 4 0 0 0 4 0 4 4 2
0 5 0 4 0 0 0 4 0 4 5 2
0 5 0 0 0 3 0 4 0 4 5 2
0 5 0 0 0 3 0 4 0 2 5 2
0 5 0 0 0 3 0 4 0 2 5 3
0 5 0 0 0 3 0 0 4 2 5 3
0 5 0 0 0 3 0 0 4 2 5 4
3 0 0 0 0 3 0 0 4 2 5 4
3 0 0 0 0 3 0 0 4 3 5 4
3 0 0 0 0 3 0 0 4 3 2 4

b4 b5 b6 s1 s2 s3

0 6 4 3 1 3
5 6 4 3 1 3
5 6 4 3 2 3
0 6 6 3 2 0
0 6 6 3 3 0
0 6 6 3 3 1
3 6 0 3 3 1
3 6 0 3 4 1
3 7 0 0 4 1
3 7 0 1 4 1
3 7 0 1 4 2
3 0 4 1 4 2
3 0 4 1 4 3
5 0 4 1 0 3
5 0 4 2 0 3
5 0 4 2 1 3

action profiles p payoffs u

13
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s1 s2 s3

b12 b2 = T22 b32

h14 = h158

h166

h24 = h2610

h256 h346

h3510

h368

b43
b5 = T14 b6 = T34

The diagram and the table above show a BR-improvement path that cycles. The1

diagram shows the valuations (bars) and bids (dots) of all buyers for each good2

individually, starting with a profile where buyer 5 buys the first good, buyer 2 buys3

the second, and buyer 6 buys the third good. After every shift by a buyer the sellers4

adjust their prices immediately and are not shown. The order of moves and the5

detailed BR-improvement paths can be seen in the table with circled payoffs indicating6

players that have a better response deviation. We use the first three buyers b1, b2, b37

as a gadget to make sellers drop their prices to 2 (for a positive payoff of 1) when the8

three actively moving buyers b4, b5, b6 do not bid for a particular good. The arrows9

connect the shifts of every buyer and can be seen to cycle. Thus, there cannot be a10

generalized potential for this game even when agents are restricted to best-response11

behavior. Moreover, in the depicted cycle sellers always move before buyers.12

Nonetheless, the market game is weakly acyclic and we will prove a stronger fact13

that the game admits a local BR scheduler. This is the exact position of the market14

game within the classification of schedulers, and it implies that the game is weakly15

acyclic through the relationships in Apt and Simon (2015). In fact the game admits16

any local BR-scheduler as long as sellers move before buyers:17

Proposition 1. Any strategic market game admits a local BR-scheduler. Moreover,18

it admits any local BR-scheduler that prioritizes sellers over buyers.19
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The proof of this proposition as well as the other results are collected in Appendix1

A.2

3.2. Better responses. In terms of better-response dynamics, some paths also cycle,3

i.e. a strategic market game is not a (generalized ordinal) potential game. This is4

implied by a stronger fact that it does not admit any local or set scheduler, in contrast5

with its best-response counterpart. The exact place of the better-response dynamics6

in the classification is the fact that the game admits a state scheduler. In other words,7

fixing an arbitrary order of moves is no longer enough when players do not always8

play best responses. We again first show a counterexample for the existence of a set9

scheduler and then prove the positive result for a state scheduler.10

The cycle of action profiles illustrated below respects the following local scheduler:11

s1 ≺f s2 ≺f b4 ≺f b3 ≺f b1 ≺f b2 and any local scheduler obtained from it by12

changing the positions of buyers 1 and 2 since they do not have improvements and13

play their unique best responses.14
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Example 2. Market game that does not respect a local scheduler, cycle for b4 ≺f b3.1 [
2 2 10 10
2 2 8 8

] 1
1
1


valuations h costs c

b3 b4 s1 s2

b1
3 b

2
3 b

1
4 b

2
4

4 0 3 0 4 2
4 0 5 0 4 2
4 0 5 0 5 2
6 0 5 0 5 2
6 0 5 0 6 2
6 0 7 0 6 2
6 0 7 0 7 2
8 0 7 0 7 2
8 0 7 0 8 2
8 0 0 3 8 2
8 0 0 3 8 3
0 4 0 3 8 3
0 4 0 3 2 3
0 4 0 3 2 4
0 4 3 0 2 4
0 4 3 0 3 4
4 0 3 0 3 4
4 0 3 0 4 4

b3 b4 s1 s2

6 0 3 1
0 5 3 1
0 5 4 1
4 0 4 1
4 0 5 1
0 3 5 1
0 3 6 1
2 0 6 1
2 0 7 1
2 5 7 1
2 5 7 2
4 0 0 2
4 0 1 2
4 0 1 3
4 7 1 3
4 7 2 3
6 0 2 0
6 0 3 0

s1 s2

b12 b2 = T22

h13 = h1410

h23 = h248

b43
b3 = T14

action profiles p payoffs u

2

Sellers’ payoffs are independent of the other sellers and a similar cycle exists if we3

were to have s2 ≺f s1. The game is also symmetric for buyers and there is another4

cycle for a scheduler with b3 ≺f b4, which can be obtained by switching the actions of5

buyer 3 and buyer 4. Since there are only two buyers who can have better responses,6

every set scheduler that prioritizes sellers is also a local scheduler. Therefore, this7

game is also an example of a market game that does not admit a set scheduler.8

There is however a natural way to ensure convergence for better responses by using9

a state scheduler.10

Proposition 2. Any strategic market game admits a (state) scheduler.11
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The idea behind the proof of this proposition is that the scheduler ensures that the1

players who can potentially cause a price drop move first. These players are the top2

bidders that are not tied and are willing to switch to another good. If there are no3

such players, other top bidders T (p) move, and then the rest of the buyers who do not4

have a highest bid for any good. We thus separate the two phases of the convergence5

process, the main phase similar to (Demange et al., 1986) and the rematching of top6

bidders. This is the same approach as in (Nax and Pradelski, 2015) for aspiration7

dynamics, but with more details required by the non-cooperative setup.8

4. Discussion9

In this paper we have shown the restrictions necessary to ensure convergence of10

a decentralized market for indivisible goods to an equilibrium. These results can11

be used to refine the sets of predictions of some perturbed learning dynamic using12

the standard approaches to stochastic stability stemming from Young (1993); Foster13

and Young (1990), or to make sure that market institutions are designed with these14

restrictions in mind to promote the desired outcomes. We conclude by discussing the15

robustness of these results to several other specifications.16

4.1. Restricted action space. Schedulers restrict the possible deviations on the17

route to the Nash equilibria by narrowing the set of possible deviators. A natural18

alternative to this might be to restrict the set of actions instead. By construction,19

such an approach would have to depend on a particular game and would not be as20

universal as schedulers. However, for the strategic market game in particular, this21

would not get us far. It appears reasonable to allow players to at least make a best22

response (and possibly some other actions) at each profile. However, by Example 1 we23

know that the game does not satisfy FBRP, and therefore even if there were no other24

actions except for best responses, the game would not always reach an equilibrium. If25

we could choose to disallow best responses in some profiles instead, we could simply26
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implement one of the optimal mechanisms like (Demange et al., 1986). Therefore,1

at least for the strategic market game, the possibilities for refining weak acyclicity2

appear to lie with the schedulers, not with restricting actions.3

4.2. Discrete bids. We consider a discretized game with an arbitrarily large but4

finite set of admissible action profiles. One reason for this is that a truly continuous5

game would require refining the concept of better- (best-)response dynamics to avoid6

infinitely small price adjustment sequences. As an example, Barron et al. (2010) and7

Hofbauer and Sorin (2006) use differential inclusions for this purpose. However, a8

continuous setting is less relevant to issues in this paper and to laboratory or real-life9

scenarios where players are ultimately limited to finite increments of bids (at least10

up to machine precision). At the same time, the necessity of Assumption 2 and the11

fact that prices can only be one ε away from competitive can be useful if ε is taken12

to represent the coarseness of players’ perception of bids and valuations. If players13

cannot make sufficiently precise bids, perhaps, for behavioral reasons that limit their14

perception of small price changes, then the adverse effects of this behavior would be15

limited by the Nash equilibrium characterization results in Appendix B.16

4.3. Alternative market clearing rule. We could alternatively always clear the17

market at buyers’ prices, i.e. replace the market clearing rule that we called s-prices18

with the following:19

(b-prices) uBj (p, x) = max
i∈S

(xijhij)−
∑
i∈S

pBijxij and uSi (p, x) =
∑
j∈B

(pBij − ci)xij.20

There are several problems with clearing the market at buyers’ prices. In a discrete21

action version of the market game that clears at the highest bid the surplus no longer22

has to be zero in a Nash equilibrium; a simple example is any market where two23

buyers are willing to tie for a good at a price strictly higher than the seller’s price.24

This is not the problem in itself, and we could focus on whether the highest bid is25
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competitive and ignore the sellers’ side altogether. However, even then, the market1

does not converge to the Nash equilibria as the game is no longer weakly acyclic. In2

other words, an active seller is necessary to guarantee convergence. The game below3

is an example of such a market where the cycle is the consequence of an inappropriate4

market clearing rule that removes incentives from the sellers.5

Example 3. Market game that is not weakly acyclic under b-prices.6

[
2 0
4 4

]
b1 b2 s1 s2

b1
1 b

2
1 b

1
2 b

2
2

1 0 0 1 1 1
0 0 0 1 1 1
1 0 0 0 1 1
0 1 0 0 1 1
0 0 0 0 1 1
0 1 0 1 1 1

b1 b2 s1 s2

1 3 0 0
0 3 0 0
1 0 0 0
3 0 0 0
0 0 0 0

< 3 < 3 0 0

surplus matrix A 0-arbitrage action profiles p payoffs U

7

We will show how the example works. First note that in any Nash equilibrium8

there is no arbitrage (by remark in the beginning of the proof of Theorem 2). At9

the same time sellers do not have any better responses in any profile. Fix pS1 and pS210

at 1. Then there are 6 possible zero-arbitrage profiles, but none of them are Nash11

equilibria; these are shown in the table above with circled payoffs indicating players12

with a devitation. In the last profile the buyers tie for good 2, but by Assumption13

1, there is at least some positive probability that buyer 1 does not obtain the good.14

Then shifting to good 1 is an improvement for her. Since there are no better responses15

leading sellers to increase their prices and no equilibria at current seller prices, every16

chain of better responses has to eventually cycle.17
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Appendix A. Proofs1

A.1. Preliminaries. Before proving Propositions 1 and 2 we will introduce several2

helpful lemmas and definitions, most importantly the individual “components of po-3

tentials” of players Fk(p), F
BR
k (p) that we will use in constructing the f -potential4

function for better and best responses respectively.5

In order to constructively prove acyclicity of improvement paths it is convenient to6

rely on auxilary variables of a particular form. For example, the sellers simply match7

the highest bid whenever they can, so it will be useful to introduce functions to de-8

scribe how prices change with the sellers’ behavior. More generally, we will introduce9

variables that do not increase/decrease as a subset of players make deviations. Let10

σKi (p) be the smallest price of good i in any profile on any improvement path such11

that only players in the set K move on this path. Formally, let the set ΦK(p) ⊆ P(p)12

be the set of profiles such that for any profile p′ ∈ ΦK(p) there is an improvement13

path ρ ∈ P(p) from p to p′ that respects the scheduler f , and on which for any p̂ ∈ ρ,14

p̂ 6= p′, the deviating player f(p̂) ∈ K. The σKi (p) is then defined as15

σKi (p) = min
p′∈ΦK(p)

p′Si .16

We will use several expressions constructed in this manner. In particular σSi (p) is17

then the smallest price of good i obtained after all sellers move from profile p. In18

practice, this value either equals the highest bid for the good, or the current seller’s19

minimum price level if there are no bids above the cost. Another useful expression20

is σ
S∪T (p)
i (p), the smallest price of good i after the sellers and the top bidders move,21

because for the prices to decrease a player from S ∪ T (p) has to move.22

Next, let φKj (p) be the highest payoff that buyer j ∈ B can obtain at current prices23

in any profile on any improvement path such that only players in the set K move on24
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this path. Formally we can define φKj as follows:1

φKj (p) = max
p′∈ΦK(p)

max
i∈S

(hij − σSi ).2

The value of φj(p) represents the opportunity for buyer j to gain by switching the3

good that she is bidding for assuming that any ties would break in her favor. In other4

words, it is the highest difference between the value of any good and the price σSi ,5

which is either the highest bid or the seller’s minimum price, whichever is higher.6

These variables are a convenient way to simplify proofs of potentials for schedulers;7

by definition, the value of φj(·) for any buyer j can only decrease until some buyer8

j′ /∈ K moves (see Lemma 1). Notice that we do not require improvement paths to9

be maximal, and in particular the unique path in ΦK(p) could be a singleton ρ = (p),10

e.g. if f(p) /∈ K. Moreover, such path always exists, ΦK
j (p) is nonempty and therefore11

φKj (p) and σKi (p) are well-defined.12

The ”component of potential” FBR
k (p) for a buyer k is the difference between13

φ
S∪{j∈B:j�fk}
k (p) and the payoff implied by the buyer’s current bid if she were the14

unique top bidder regardless of whether she is actually winning, is in a tie or is not15

the highest bidder. If this difference is negative, FBR
k (p) = 0. The component for the16

seller is just the difference between the highest bid and the seller’s price, the “spread”.17

In other words, the expression for FBR
k (p) is then:18

FBR
k (p) =


|pSk −maxj∈B pkj| if k ∈ S

max(0, φ
S∪{j∈B:j�fk}
k (p)− (hm(k)k − pBm(k)k)) if k ∈ B.

19
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A similar expression Fk(p) for better responses is the difference between φ
T (p)∪S
k (p)1

and the payoff implied by the buyer’s current bid:2

Fk(p) =


|pSk −maxj∈B p

B
kj| if k ∈ S

max(0, φ
T (p)∪S
k (p)− (hm(k)k − pBm(k)k) if k ∈ B.

3

Notice that the only changes from the best-response case is that we consider the whole4

set of top bidders and sellers T (p) ∪ S instead of the set of players that precede k in5

≺f .6

These definitions require some explanation. The dynamics of the game involve two7

types of behavior: buyers shifting between goods for higher payoff thus lowering the8

Fk(·) or FBR
k (·) and bidding wars with generally zero Fk(·) and FBR

k (·). The functions9

will allow us to separate the behaviors and ensure that shifting between goods precede10

the bidding wars thus ensuring that there are no cycles.11

The following is the only new definition introduced in this paper, and we use it to12

more concisely describe the potentials for schedulers:13

Definition 1. We will say that a function β is nondecreasing (nonincreasing)14

in the better responses of a player k ∈ K or of the set of players K at some15

profile p if β(p) = minp′∈ΦK(p) γ(p′) (or β(p) = maxp′∈ΦK(p) γ(p′)) for some function16

γ : Ω→ R.17

The expressions φKj (p) introduced above are non-increasing in better responses of18

players in the set K, while σKi (p) are non-decreasing in their better responses. The19

key property of such functions is that the value is non-increasing or non-decreasing20

until a player that is not in K moves. This is captured by the following lemma.21

Lemma 1. Take an action profile p and any profile p′ that is an improvement for f(p)22

from p. If function β is non-decreasing in the better responses of the set of players K23
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at p and f(p) ∈ K then β(p) ≤ β(p′). If β is non-increasing in the better responses1

of the set of players K at p and f(p) ∈ K then β(p) ≥ β(p′).2

Proof. Since f(p) ∈ K, for any improvement path ρ′ ∈ ΦK(p′) there is also an im-3

provement path ρ = (p)_ρ′ ∈ ΦK(p), obtained by prepending p to ρ′. Since β(·) is4

the maximum (or minimum) over these sets, β(p) ≥ β(p′) (or β(p) ≤ β(p′)). �5

We now deal with the problem of tie-breaking. For this we will introduce a function6

C(·):7

C(p) =
∑
j∈T (p)

∑
j′∈T (p):

mj′ (p) 6=mj(p)

πmj(p)jπmj′ (p)j
′8

. The C stands for “congestion”, because the part of the improvement path where9

players shift between tied outcomes resembles a congestion game. Similarly to σ and10

φ variables above, let τK(p) = minp′∈ΦK(p) C(p′) for changes in C when players in K11

move.12

A.2. Proofs of Propositions 1 and 2. For the proofs of the main results we will13

separately consider the bidders who are buying some good T (p) and the rest of the14

buyers B \ T (p). The next lemma deals with the former, simpler case when the15

deviating buyer is buying some good in p. Since the move to p′ is an improvement,16

she has to be buying some good in p′ as well, i.e. k ∈ T (p) and then k ∈ T (p′).17

Lemma 2. Take a scheduler f with S ≺f B, an action profile p, f(p) = k ∈ B and18

any profile p′ that is a better response for buyer k from p. Suppose also that k ∈ T (p)19

and thus also k ∈ T (p′). Then20

(i) If hik − pBik < hi′k − p′Bi′k then both FBR
k (p) > FBR

k (p′) and Fk(p) > Fk(p
′),21

(ii) If hik − pBik ≥ hi′k − p′Bi′k then C(p) < C(p′).22

Proof. Let mk(p) = i and mk(p) = i′. Since by construction φ
S∪{j∈B,j�fk}
k (·) is non-23

increasing in better responses of k ∈ S ∪ {j ∈ B, j �f k}, it does not increase in p′24
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by Lemma 1. Similarly, since by construction φ
T (p)∪S
k (p) is non-increasing in better1

responses of k ∈ T (p) ∪ S, it does not increase in p′ by Lemma 1 as well. We must2

then have FBR
k (p) ≥ FBR

k (p′) and Fk(p) ≥ Fk(p
′). We now consider the two cases3

separately.4

(i) Suppose first that hik−pBik < hi′k−p′Bi′k. Then φ
S∪{j∈B,j�fk}
k (p) ≥ φ

S∪{j∈B,j�fk}
k (p′) ≥5

hi′k − p′Bi′k > hik − pBik, and thus FBR
k (p) > 0 and FBR

k (p) > FBR
k (p′). For better6

responses Fk(p) > Fk(p
′) follows by the same argument.7

(ii) Suppose now instead that hik−pBik ≥ hi′k−p′Bi′k. Note that Uk(p
′) =

πi′k(p)∑
j∈Ti′

πi′j
(hi′k−8

pBi′k) and Uk(p) = πik(p)∑
j∈Ti

πij(p)
(hik − pBik). For p′ to be a better response for k we9

must have Uk(p) < Uk(p
′), and thus πik(p)∑

j∈Ti
πij(p)

<
πi′k(p)∑
j∈Ti′

πi′j
or πik(p)

∑
j∈Ti′

πi′j <10

πi′k(p)
∑

j∈Ti πij(p). At the same time11

C(p′)− C(p) = 2

πi′k(p)∑
j∈Ti

πij − πik(p)
∑
j∈Ti′

πi′j

 ,12

which is therefore positive and so C(p) < C(p′) as required.13

�14

The next lemmas will be useful for the other case when the deviating buyer was15

not buying a good in p. This is the ”on-path” part of the proof for the best-response16

sequence that behaves similarly to the auction in Demange et al. (1986).17

Lemma 3. Take a scheduler f with S ≺f B, and an action profile p, f(p) = k ∈18

B \ T (p). Then in any profile p′ that is a better response for k in p:19

(i) σSi (p′) ≥ σSi (p) for any i ∈ S20

(ii) if σSi (p′) = σSi (p) for all i ∈ S then C(p) < C(p′).21

Proof. Either there is some other buyer j′ ∈ B who bids more than k in p for mk(p)22

with pBmk(p)j′ ≥ pBmk(p)k or there is no trade with pSmk(p) > pBmk(p)j and maxj∈B p
B
mk(p)j ≤23
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cmk(p). Then k either became the highest bidder with a higher bid, the highest bidder1

j′ is unchanged, or the good is not sold. In any of these cases if the seller of the good2

has a deviation, it is to increase the price. Therefore, (i) holds.3

Moreover, if k matched the current price pSi = σSi (p), and thus σSi (p′) = σSi (p) for4

all i ∈ S, then (ii) must be true by definition of C since T (p′) = T (p)∪ k, i.e. the set5

T (p) has expanded while no winning buyers changed for other goods. �6

Lemma 4. Take a scheduler f with S ≺f B. Suppose also that f(p) = j ∈ B and let7

p′ be an improvement for j from p that respects f . If σSi (p) > σSi (p′) for some i ∈ S8

then maxi∈S(hij − σSi ) > hmj(p)j − pBmj(p)j.9

Proof. For any seller i ∈ S to decrease the price in some state after p′, the highest10

bid for her good has to be above the cost but below p′Si . Since f(p) = j ∈ B,11

σSi (p) = pSi and either maxj′∈B p
′B
ij′ < p′Si = pSi = maxj′∈B p

B
ij′ or maxj′∈B p

B
ij′ ≤12

ci < maxj′∈B p
′B
ij′ . In other words, the highest bid should have decreased, or some13

buyer was the first to offer a bid above the seller’s cost. The latter case cannot be14

an improvement for the buyer j since the good is not sold and her payoff is zero.15

Therefore, maxj′∈B p
′B
ij′ < maxj∈B p

B
ij′ . Then the buyer j was the unique top bidder16

for i and maxi∈S(hij − σSi ) ≥ Uj(p
′) > Uj(p) = hmj(p)j − pBmj(p)j. �17

The next lemma shows that if no non-tied player wants to switch good in some set18

of players K, then prices and bids will continue rising until an equilibrium is reached19

or a player not in K moves. This effectively separates the adjustments of top bidders20

from the bidding wars.21

Lemma 5. Take an action profile p and a scheduler f with S ≺f B Suppose maxi∈S(hij−22

σSi ) ≤ hmj(p)j − pBmj(p)j for any j in some set of buyers K. Then in any state p′ such23

that there is an improvement path ρ = (p, ...p′) ∈ P(p) that respects f and such that24

f(p̂) ∈ K for all p̂ ∈ ρ, p̂ 6= p′:25
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(i) For any i ∈ S, σSi (p) ≤ σSi (p′),1

(ii) max(0,maxi∈S(hij−σSi (p))) ≥ max(0,maxi∈S(hij−σSi (p′))) for any j ∈ B, j �f2

k,3

(iii) maxi∈S(hij − σSi (p′))) ≤ (hm(j)j − p′Bm(j)j) for any j ∈ B, j �f k,4

Proof. By induction. The plan for the proof that the three conditions hold for any5

profile p′ ∈ ρ, with every condition implying the next.6

Let p1 = p, and notice that the three conditions above hold for p1. Suppose the7

lemma is true for all profiles in ρ = (p1, p2, ...) up to some pl. We will show that8

the lemma holds for the next profile pl+1 as well, if such profile exists. If we had9

k /∈ K then pl would have been the last profile in ρ. If instead f(pl) ∈ S ∩K then10

σSi (p) ≤ σSi (pl) by construction. The remaining case is f(pl) ∈ B ∩K. By Lemma 411

since (iii) holds for pl, (i) follows for pl+1.12

It is easy to see that from (i) it follows that13

max(0,max
i∈S

(hij − σSi (pl+1))) ≤ max(0,max
i∈S

(hij − σSi (pl)))14

for any j ∈ B ∩K. That is, the best possible trade (ignoring the ties) is no better in15

pl+1 than in pl for any j ∈ B. This implies part (ii).16

For j = f(pl) we must have maxi∈S(hij − σSi (pl+1))) ≤ (hm(j)j − p(l+1)B
m(j)j ), otherwise17

she is not playing the best response in pl+1. For any other buyer j ∈ K ∩B, j 6= f(pl)18

the action has not changed, i.e. plBj = p
(l+1)B
j and thus by (ii) for these players19

we also have maxi∈S(hij − σSi (pl+1)) ≤ maxi∈S(hij − σSi (pl) ≤ (hm(j)j − plBm(j)j) =20

(hm(j)j − p(l+1)B
m(j)j ) for any j ∈ K ∩B. By induction this implies (iii).21

�22

We are now ready to prove Proposition 1.23

Proof of Proposition 1. The goal of the proof is to introduce an (incomplete) acyclic24

total ordering /BR such that the states in any improvement path that respects a local25
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scheduler f can be ordered by /BR. Define /BR as the following lexicographic ordering1

on admissible action profiles p: p′ /BR p if either2

(a)


FBR
j′ (p) > FBR

j′ (p′) for some j′ ∈ B,

FBR
j (p) = FBR

j (p′) for all j ∈ B, j ≺f k,
3

or4

(b)


FBR
j (p) = FBR

j (p′) for all j ∈ B,

σSi (p) ≤ σSi (p′) for all i ∈ S,

σSi (p) < σSi (p′) for some i′ ∈ S,

5

or6

(c)


FBR
j (p) = FBR

j (p′) for all j ∈ B,

σSi (p) = σSi (p′) for all i ∈ S,

C(p) < C(p′)

7

or8

(d)



FBR
j (p) = FBR

j (p′) for all j ∈ B,

σSi (p) = σSi (p′) for all i ∈ S,

C(p) = C(p′)

FBR
i′ (p) > FBR

i′ (p′) for some i′ ∈ S,

FBR
î

(p) = FBR
î

(p′) for all î ∈ S, î ≺f i′.

9

That is, the profiles are sorted according to components for buyers FBR
j , prices σi,10

tie-breaking component C, and sellers’ components FBR
i in this order of importance.11
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Consider a BR-improvement path ρ = (...p, p′) that respects f . We need to show1

that p /BR p′.2

Suppose first that the improving player is a seller, f(p) = k ∈ S. In any profile p3

where non-zero payoff for k is possible she has a unique best response pSk = maxj∈B p
B
ij.4

Since φj(·) is non-increasing in sellers’ better responses for any buyer j ∈ B, we have5

φj(p) ≥ φj(p
′) for all j ∈ B by Lemma 1. In turn, since the seller’s price only enters6

FBR
k′ (·) through φ, this implies that FBR

k′ (p′) ≤ FBR
k′ (p) for all k′ ∈ B∪(S\f(p)). Since7

σSi for any i ∈ S is non-decreasing in seller k’s responses by Lemma 1, σSi (p) ≤ σSi (p′).8

Moreover, since p′ must be an improvement, Tk(p
′) ⊆ Tk(p) and thus C(p) ≤ C(p′).9

For seller k to have a better response at p it is necessary that pSk 6= maxj∈B p
B
kj. Thus,10

FBR
k (p) > FBR

k (p′) and, either by part (d) or by one of the conditions in the other11

parts, p′ /BR p.12

Now suppose that the improving player is a buyer, f(p) = k ∈ B. By construction13

φ
S∪{j′∈B:j′�f j}
j of any j ∈ B, k ≺f j is non-increasing in better responses of k and14

φ
S∪{j′∈B:j′�f j}
j (p′) ≤ φ

S∪{j′∈B:j′�f j}
j (p) by Lemma 1. Moreover, since pBj = p′Bj for all15

such j ∈ B, k ≺f j we also have FBR
j (p) ≥ FBR

j (p′). Note also that for the new action16

profile to be a better response, it must be that k ∈ T (p′).17

We will continue with two cases:18

(1) Suppose buyer k does not have the winning bid in p, that is k ∈ B\T (p). Then19

in p′ it must be that maxi∈S(hik−σSi (p′)) ≤ (hm(k)k−p′Bm(k)k) because k played20

a best response. At the same time since f(p) = k, maxi∈S(hij − σSi (p))) ≤21

(hm(j)j − pBm(j)j) for any j ∈ B, j �f k. Moreover, since at p′ all bids are22

the same and buyer k’s bid is no less than in p, σSi (p′) ≥ σS(p) and thus23

maxi∈S(hij − σSi (p′)) ≤ (hm(j)j − p′Bm(j)j) for any j ∈ B, j �f k. Thus, because24

ΦS∪{j′∈B:j′�f j} ⊆ ΦS∪{j′∈B:j′�fk} for any j �f k, part (iii) of Lemma 5 for25

K = S ∪ {j′ ∈ B : j′ �f k} implies FBR
j (p′) = 0 for any j �f k. If26
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FBR
j (p) > FBR

j (p′) for some j �f k then p′ /BR p by part (a). Suppose instead1

that FBR
j (p) = FBR

j (p′) for all such j. Let the current highest bidder for the2

good mk(p
′) be j′ ∈ B. By Lemma 3 one of the two cases must occur in p′.3

Either buyer k bids higher than j′ and the highest bid for that good is higher4

in p′ or she bids the same as j′, but C(p) < C(p′). In both cases either by part5

(b) or by part (c) again p′ /BR p.6

(2) Suppose now instead that buyer k is buying both in p and p′, that is k ∈7

T (p), k ∈ T (p′). By Lemma 4, if σSi (p′) < σSi (p) for some i ∈ S then8

maxi∈S(hik − σSi (p)) > hmk(p)j − pBmk(p)j and then since k has to play a best9

response in p′, maxi∈S(hik − σSi (p′)) = hmk(p′)j − pBmk(p′)j > hmk(p)j − pBmk(p)j.10

However, then by Lemma 2, FBR
k (p′) > FBR

k (p) and by part (a), p′ /BR p. If11

this is not the case then σSi (p′) ≥ σSi (p) and by Lemma 2, FBR
k (p′) < FBR

k (p)12

or C(p) < C(p′) and, by part (a), part (b) or part (c), p′ /BR p.13

Therefore, for any ρ that respects f we have p′ /BR p. Finally since by construction14

/BR is acyclic, there is an associated f -potential function F : F (p′) < F (p) iff p′/BRp.15

This in turn implies that any market game respects every such local scheduler f by16

Theorem 9 in Apt and Simon (2015).17

�18

We now prove the result for better responses. All lemmas above apply to the better-19

response case. The only effect that is not present is that the Fk(p) is not necessarily20

zero after an improvement by k ∈ B \ T (p), because it does not have to be the best21

response. This fact is used in the proof of Proposition 1 above. For better responses22

we ensure that f schedules k to move again until she reaches the best response.23

Proof of Proposition 2. Let the set T̄ (p) ⊆ T (p) for any profile p include all buyers24

that are in T (p) and have maxi∈S(hik − σSi (p)) > (hm(k)k − pBm(k)k). Take a scheduler25

f that prioritizes players in this order: S ≺f T̄ (·) ≺f T \ T̄ (·) ≺f B \ T (·)26
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Define / as the following lexicographic ordering on admissible action profiles p:1

p′ / p if either2


σT̄∪Si (p) ≤ σT̄∪Si (p′) for all i ∈ S,

σT̄∪Si′ (p) < σT̄∪Si′ (p′) for some i′ ∈ S,
(a)

or 
σT̄∪Si (p) = σT̄∪Si (p′) for all i ∈ S,

τ T̄∪S(p) < τ T̄∪S(p′),

(b)

or3

(c)


σT̄∪Si (p) = σT̄∪Si (p′) and

τ T̄∪S(p) = τ T̄∪S(p′) ,∑
j∈B Fj(p) >

∑
j∈B Fj(p

′)

4

or5

(d)



σT̄∪Si (p) = σT̄∪Si (p′) and∑
j∈B Fj(p) =

∑
j∈B Fj(p

′)

τ T̄∪S(p) = τ T̄∪S(p′) ,

C(p) < C(p′) ,

6
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or1

(e)



σT̄∪Si (p) = σT̄∪Si (p′), and∑
j∈B Fj(p) =

∑
j∈B Fj(p

′),

τ T̄∪S(p) = τ T̄∪S(p′) ,

C(p) = C(p′) ,

Fi′(p) > Fi′(p
′) for some i′ ∈ S,

Fî(p) = Fî(p
′) for all î ∈ S, î ≺f i′.

2

That is, the profiles are sorted according to prices σT̄∪Si , tie-breaking component3

τ T̄∪S that is non-decreasing in better responses of T̄∪S, the sum
∑

j∈B Fj, tie-breaking4

component C, and sellers’ components FBR
i in this order of importance.5

Consider a BR-improvement path ρ = (...p, p′) that respects f . We need to show6

that p /BR p′.7

Suppose first that the improving player is a seller, f(p) = k ∈ S. Since the sellers8

again move first according to f , the argument for k ∈ S is unchanged from Proposition9

1. In any profile p where non-zero payoff for k is possible, a seller has a unique best10

response pSk = maxj∈B p
B
ij. Since φj(·) is non-increasing in sellers’ better responses for11

any buyer j ∈ B, we have φj(p
′) ≤ φj(p) for all j ∈ B by Lemma 1. In turn, since12

the seller’s price only enters Fk′(·) through φ, this implies that Fk′(p
′) ≤ Fk′(p) for13

all k′ ∈ B ∪ (S \ f(p)). Since σT̄∪Si and τS∪T̄i are non-decreasing in sellers’ responses14

by Lemma 1, σT̄∪S ≤ σT̄∪S and τ T̄∪S(p) ≥ τ T̄∪S(p′). Moreover, since p′ must be an15

improvement, Tk(p
′) ⊆ Tk(p) and thus C(p) ≤ C(p′). For seller k to have a better16

response it is necessary that pSk (p′) 6= maxj∈B p
B
kj(p

′). Thus, Fk(p
′) < Fk(p), and,17

therefore either by part (e) or by one of the conditions in the other parts, p′ /BR p.18

Now suppose that the improving player is a buyer, that is f(p) = k ∈ B.19
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Note again that for the new action profile to be a better response, it must be that1

k ∈ T (p′).2

We will continue the proof by cases:3

(1) Suppose buyer k does not have the winning bid in p, that is k ∈ B \ T (p).4

Since f(p) = k, maxi∈S(hij − σSi (p))) ≤ (hm(j)j − pBm(j)j) for any j ∈ T (p) \ k.5

Moreover, since at p′ all bids are the same and buyer k’s bid is no less than6

in p, σSi (p) ≤ σSi (p′) and thus maxi∈S(hij − σSi (p′))) ≤ (hm(j)j − p′Bm(j)j) for7

any j ∈ T (p) \ k. Let p1 be the first state after p with f(p) /∈ S. Then in p1
8

either T̄ (p) = {k} and f(p1) = k or T̄ (p) = ∅. In the first case k moves again.9

Player k continues to move until maxi∈S(hik − σSi (p̄))) ≤ (hm(k)k − p̄Bm(k)k)10

and T̄ (p) = ∅ and the sellers finish moving. This has to happen eventually11

in some state p̄ because by Lemma 2 either (hm(k)k − p̄Bm(k)k) or C(·) increases12

and both are bounded. At the same time σSi (p) ≤ σSi (p̄) since other bids13

are unchanged and the bid of k is no less than the highest bid for mk(p̄).14

Moreover, if σSi (p) = σSi (p̄) for every i ∈ S, it must be that C(p) < C(p̄) by15

Lemma 3. Thus, σS∪T̄ (p′) = σS(p̄) ≥ σS∪T̄ (p) and if it holds with equality16

then τS∪T̄ (p′) = C(p̄) > τS∪T̄ (p) = C(p). Thus, by part a or b, p′ /BR p.17

(2) Suppose now instead that buyer k is buying both in p and p′, that is k ∈18

T (p), k ∈ T (p′). By construction φS∪Tj of any j ∈ B is non-decreasing in19

better responses of k and φS∪Tj (p′) ≤ φS∪Tj (p) by Lemma 1. Moreover, since20

pBij = p′Bij for all i ∈ S and all j ∈ B \ k we also have Fj(p) ≥ Fj(p
′) for any21

j ∈ B \ k. If k ∈ T̄ (p) then, since σS∪T̄i and τS∪T̄i are non-decreasing in better22

responses of S∪T̄ , by Lemma 1 σS∪T̄i (p) ≤ σS∪T̄i (p′) and τS∪T̄i (p) ≤ τS∪T̄i (p′). If23

instead k ∈ T (p)\T̄ (p) then by Lemma 4 σS∪T̄i (p) ≤ σS∪T̄i (p′) and τ(p) = C(p).24

As σS(p) ≤ σS(p′), T̄ (p′) = {∅} and therefore τ(p′) = C(p′). At the same time25
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by Lemma 2, FBR
k (p′) < FBR

k (p) or C(p) < C(p′). Thus, either by part (c) or1

part (d) or by other parts, p′ /BR p.2

Therefore, for any ρ that respects f we have p′ / p. Finally since by construction3

/ is acyclic, there is an associated f -potential function F : F (p′) < F (p) iff p′ / p.4

This in turn implies that any market game respects every such state scheduler f by5

Theorem 9 in Apt and Simon (2015).6

�7

Appendix B. Characterization of equilibria8

In this appendix we present the characterization of the ”sinks” of the convergence9

process, i.e. the Nash equilibria of the market game.10

B.1. Competitive equilibria. While we do not focus on competitive behavior, we11

will use competitive equilibria to characterize and narrow down the set of Nash equi-12

libria.13

A competitive equilibrium for the economy (h, c) is a pair (y, p̃), where14

y = ((yi)i∈S, (yj)j∈B) ∈
∏
i∈S

Yi ×
∏
j∈B

Yj15

and p̃ = (p̃i)i∈S ∈ RM
+ such that16

(1)

max
i∈S

(yijhij)−
∑
i∈S

p̃iyij ≥ max
i∈S

(y′ijhij)−
∑
i∈S

p̃iy
′
ij

(p̃i − ci)yi ≥ (p̃i − ci)y′i for all y′i ∈ Yi, for all i ∈ S, and∑
j∈B

yij = yi for all i ∈ S.

17

The first set of conditions represent utility maximization by buyers and encode the18

assumption that buyers can enjoy at most one good. The second set of conditions19
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represent profit maximization by the sellers. The third set of conditions includes the1

market clearing conditions for each of the goods.2

B.2. Nash equilibria. To describe the set of Nash equilibria of the market game,3

note that for every subset S ′ ⊆ S (including the empty set), we can define a sube-4

conomy (h′, c′) for goods and sellers S ′ and buyers B. Let (y′, p̃′) be a competitive5

equilibrium for any such economy, where6

y′ = ((y′i)i∈S′ , (y′j)j∈B) ∈ YS′,B ≡
∏
i∈S′

Yi ×
∏
j∈B

Yj and p̃′ = (p̃′i)i∈S′ ∈ R|S
′|

+7

With a slight abuse of notation, for any y ∈ YS′,B, let8

x(y) ≡ (x ∈ X : xij = y′ij if i ∈ S ′ and j ∈ B, and xi′j = 0 if i′ /∈ S ′ and j ∈ B).9

Note that if x(y′) ∈ F (p) for some bid profile p = (pB1 , . . . , p
B
N , p

S
1 , . . . , p

S
M) such that10

y′i′j = 1 ⇒ pSi = pBij = p̃′i for every i′ ∈ S ′ and j ∈ B,11

then x(y′) induces the same allocation than the competitive equilibrium (y′, p̃′); that12

is, it induces the same assignment and the same money transfers than (y′, p̃′) for every13

i ∈ S ′ and j ∈ B, with any other seller i′ /∈ S ′ left unassigned.14

We say that a bid profile p induces the same allocation than (y′, p̃′) if Π(p) is a15

singleton satisfying Π(p) = {x(y′)}, and moreover, for every i′ ∈ S ′ and j ∈ B such16

that y′i′j = 1, we have pSi = pBij = p̃′i.17

The theorems in this section show that the Nash equilibria generally correspond18

to competitive equilibria of some subeconomy. In other words, a Nash equilibrium is19

either a competitive equilibrium for the whole economy or a competitive equilibrium20

provided that some markets fail to open due to miscoordination. This largely mirrors21

the semi-Walrasian equilibria in Mas-Colell (1982). The only complication is caused22

by the tie-breaks that slightly expand the set of Nash equilibria in terms of prices.23
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More precisely, the set of matchings resulting from Nash equilibria is the same as1

the set of matchings of competitive equilibria for some subeconomy, but this result2

requires our Assumption 2 for coarse space. The Nash equilibrium prices don’t have3

to be competitive, but are always within ε = 1 from them.4

We start with the “competitive =⇒ Nash” direction, which is straightforward.5

This and the other results in this section are independent of tie-breaking rules. In6

particular, note that Π(p) is a singleton below.7

Theorem 1. Let (y′, p̃′) be a competitive equilibrium for some economy (h′, c) consist-8

ing of goods S ′ ⊆ S and such that p̃′ ∈ ZM . Then there is a bid profile p that induces9

the same allocation, prices, and payoffs in (possibly one of many) Nash equilibria of10

the strategic market game for the larger economy {h, c}.11

Proof. To prove the theorem, consider p such that12

pSi =

{
p̃′i if i ∈ S ′
κ if i /∈ S ′13

for some κ > maxi∈S,j∈B hij, and14

pBij =

{
p̃′i if y′ij = 1
0 otherwise

.15

While the assignment x(y′) makes zero surplus, every other assignment makes zero16

or negative surplus, and moreover the assignment above ray-dominates every other17

zero-surplus assignment. Hence, Π(p) = {x(y′)}, as desired.18

It is straightforward to check that, since ask prices for goods such that i ∈ S ′ are19

competitive and prices for goods i /∈ S ′ are prohibitively expensive, no buyer has an20

incentive to deviate from p. Similarly, since bid prices for goods such that i ∈ S ′ are21

competitive, and prices for goods i /∈ S ′ are zero, no seller has an incentive to deviate22

from p. �23
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The converse is almost true, i.e. there are no Nash equilibria that are too far away1

from competitive outcomes. However, the discrete formulation can distort outcomes a2

little. Without Assumption 2, we can only guarantee competitiveness by adjusting the3

payoffs by ε. In particular the following theorem is true with or without Assumption4

2.5

Theorem 2. Let x ∈ Π(p) with π(x) > 0 and suppose p ∈ ZM is a Nash equilibrium6

for a strategic market game for some economy {h, c} with goods S. Then there is a7

competitive equilibrium (y′, p̃′) for some subeconomy (hε, c′) for goods S ′ ⊂ S, where8

hεij ∈ {hij, hij + ε} for all i ∈ S ′, j ∈ B that induces the same allocation as x with the9

same prices p̃′i = pSi for any i ∈ S ′.10

Proof. Note first that the surplus has to be zero in any Nash equilibrium:11

∑
i∈S

∑
j∈B

xij(p
B
ij − pSi ) = 0 for all x ∈ F (p).12

If, on the contrary, for some outcome x and some j ∈ B and i ∈ S, xij = 1 and13

pBij > pSi , then seller i has a profitable deviation in p to p̃′Si = pSi + 1. Then x is14

still preferable for the clearing house due to the ray-dominance assumption, and in15

all outcomes in p seller i is selling her good for a higher price of pSi + 1. A the same16

time a negative surplus cannot be chosen by the clearing house, i.e. it is not in Π(p).17

Hence, xij = 1 implies pSi = pBij, and every possible match makes a zero surplus.18

Let S ′ be the subset of sellers whose goods are assigned by x, let y′ be the solution19

to x(y′) = x, and let p̃′ = (pSi )i∈S′ . We claim that (y′, p̃′) is a competitive equilibrium20

for the subeconomy (hε, c′) for goods S ′ and hεij = hij + 1 if xij = 1 and hεij = hij21

otherwise.22

To see that this is a competitive equilibrium, note first that market clearing is23

guaranteed by the definition of Π(p). Profit maximization for each seller i at the24

given price pSi is guaranteed by the fact that the dominated strategies pSi < ci are25
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disallowed. Moreover, since p is a Nash equilibrium, pSi ≥ ci so that selling at the1

price pSi is at least as good as not selling even without this restriction under any2

market clearing rule.3

Finally, we claim that each buyer j ∈ B maximizes utility by choosing y′j given4

prices p̃′. For suppose not; then one of the following must hold:5

(i) xij = 1 for some i ∈ S ′ but there is i′ ∈ S ′ such that hεi′j − pSi′ ≥ hεij − pSi + 1,6

(ii) xij = 0 for all i ∈ S ′ but there is i′ ∈ S ′ such that hεi′j − pSi′ ≥ 1.7

In case (i), since xij = 1 we have hi′j − pSi′ ≥ hij − pSi + 2 and buyer j can deviate8

to p′Bi′j = pSi′ + 1 and p′Bi′′j = 0 for all i′′ 6= i. After the deviation, the clearing house9

should match j and i′ since every other match makes zero or negative surplus.10

Similarly, in case (ii), buyer j can deviate to p′Bi′j = pSi′ for some positive reward11

from a tie. The clearing house should match j and i′ after the deviation with some12

positive probability. Finally, since no payoffs have decreased, no players are playing13

their dominated actions.14

Hence, in each of the two cases, p cannot be a Nash equilibrium. �15

This is of course not very satisfying, since we had to pay extra ε to every matched16

buyer to ensure competitiveness. Another problem is that without extra assumptions,17

the Nash equilibrium matchings don’t generally have to be competitive. While the18

matchings are competitive in the perturbed game for (hε, c′), they are not necessar-19

ily competitive in the original game for (h, c′). This is exactly the reason for the20

Assumption 2.21

The following theorem refines the previous result under Assumption 2, stating22

that all Nash equilibrium matchings are also competitive equilibrium matchings. So23

the only adverse effect of discrete bids is an ε change in some prices away from the24

competitive equilibrium.25
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Theorem 3. Under Assumption 2, if x ∈ Π(p) with π(x) > 0, and p is a Nash1

equilibrium with pS ∈ Z for some strategic market game for economy {h, c} with2

goods S, then there is a competitive equilibrium (y′, p̃ε) for some subeconomy (h′, c′)3

for goods S ′ ⊆ S that induces the same allocation as x with prices p̃εi ∈ [pSi , p
S
i + ε] for4

any i ∈ S ′.5

Proof. Define pε as a vector where for any j ∈ B and i ∈ S ′ as p̃εi = 2z, where z ∈ Z6

is the smallest integer such that p̃εi ≥ pSi . That is, we adjust prices up by ε so that7

they are on the grid for valuations.8

The argument is almost the same as the previous theorem, except we shift prices9

instead of valuations. The market clearing is again ensured by the construction of10

Π(p) and the sellers are optimizing since p̃ε ≥ pSi ≥ ci. It remains to show that the11

buyers are optimizing.12

We therefore claim that each buyer j ∈ B maximizes utility by choosing y′j given13

prices p̃ε. For suppose not; then one of the following cases must hold:14

(i) xij = 1 for some i ∈ S ′ but there is i′ ∈ S ′ such that hi′j − p̃εi′ ≥ hij − pεi + 1,15

(ii) xij = 0 for all i ∈ S ′ but there is i′ ∈ S ′ such that hi′j − p̃εi′ ≥ 1.16

In case (i), hi′j − p̃εi′ = hij − p̃εi + 1 is impossible by construction of p̃ε. Then if17

hi′j − p̃εi′ ≥ hij − p̃εi + 2 buyer j can deviate to p′Bi′j = p̃εi′ + 1 and p′Bi′′j = 0 for all i′′ 6= i18

for an extra payoff of19

(hi′j − pSi′)− UB
j (p) ≥ 1 > 0,20

since UB
j (p) ≤ (hij − pSi ). After the deviation, the clearing house should match j and21

i′ since every other match makes zero or negative surplus by the previous step.22

Similarly, in case (ii), buyer j can deviate to p′Bi′j = pSi′ ≤ p̃εi′ for some positive23

reward from a tie. The clearing house should then match j and i′ after the deviation24

with positive probability.25
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Finally, since no payoffs have decreased, no players are playing their dominated1

actions. Any buyer who was buying a good in the Nash equilbrium for some price pSi2

has a non-negative payoff for the same good for the price p̃ε by Assumption 2.3

Hence, in each of the two cases, p cannot be a Nash equilibrium.4

�5
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