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AN ALGEBRAIC APPROACH TO REVEALED
PREFERENCE

MIKHAIL FREER

University of Essex

CÉSAR MARTINELLI

George Mason University

Abstract. We propose and develop an algebraic approach to re-

vealed preference. Our approach dispenses with non algebraic

structure, such as topological assumptions. We provide an alge-

braic axiom of revealed preference that subsumes previous, classical

revealed preference axioms, and show that a dataset is rationaliz-

able if and only if it is consistent with the axiom.

1. Introduction

The revealed preference approach to consumer choice, pioneered by

Samuelson (1938), builds on the fact that, although we cannot observe

the complete preference relation profiles of economic agents, we can

observe their choices over some budget sets. Starting with the work

Richter (1966) and Afriat (1967), this approach has been used to con-

struct tests of rational decision making (see Chambers and Echenique,

2016, for a recent comprehensive overview).
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lison for useful comments.
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2 FREER AND MARTINELLI

Contribution. We propose an algebraic version of revealed preference

approach. That is, we consider theories about preferences in their

logical structure together with the underlying algebraic structure. By a

theory about preferences, we mean a statement about preferences such

as “If x is better than y then f(x) better than f(y), where f ∈ F .”

In this statement, f is some function over alternatives and F is a

family of functions that actually defines the theory. The algebraic

structure we impose considers the algebra of (F , ◦), where ◦ is the

composition operator. In particular, we propose an algebraic axiom

of revealed preferences and show that if (F , ◦) is a group,1 then the

observed set of data could be generated by a preference relation if and

only if it is consistent with the algebraic axiom of revealed preferences.

We show that our result subsumes several existing tests of revealed

preference that include transitive (see Afriat (1967), Varian (1983),

Forges and Minelli (2009), and Nishimura et al. (2017)), homothetic

(see Varian (1983), Heufer (2013), and Heufer and Hjertstrand (2019))

and quasilinear (see Brown and Calsamiglia (2007) and Castillo and

Freer (2020)) preferences.

Our approach can be considered a continuation of the research by

Chambers et al. (2014). A major result of that paper is that, if a

theory about preferences can be axiomatized with so-called “univer-

sal negation of conjunctions of atomic formulae” (UNCAF), then the

theory is falsifiable. We take on the next step, making explicit the

algebraic structure of the theory and presenting a revealed preference

axiom that is necessary and sufficient to test any of such theory. We

also show that, under some extra conditions, completeness of prefer-

ences has no additional empirical content. This fact is consistent with

the work of Chambers et al. (2014), since, as they explicitly mention,

completeness is not an UNCAF axiom.

Other related literature. Our work is linked to the literature on gen-

eralized revealed preferences. Several authors in this literature provide

a generalization of the revealed preference approach, but keeping some

1A tuple (F , ◦) is said to be group if the set of functions F contains an identify

function, F is closed, every function in F has an inverse that also belongs to F ,

and the composition operator ◦ is associative.
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topological assumptions in place. Topological assumptions are neces-

sary to guarantee existence of a convenient utility function represent-

ing the underlying preference relation. Seminal examples are Forges

and Minelli (2009) and Nishimura et al. (2017), who generalize Afriat

(1967) theorem for general shapes of budgets and topological spaces.

Recently, Polisson, Quah, and Renou (2015) have proposed a lattice

approach, and provided conditions that guarantee the rationalization

of an observed set of data with theories such as expected utility, ranked

dependent expected utility, and cumulative prospect theory. The pa-

pers mentioned above construct tests which can be easily applied to

the data.

Other authors generalize the Szpilrajn (1930) result concentrating

on the completion of the revealed preference relation. Seminal papers

by Suzumura (1976), Duggan (1999), and Demuynck (2009) provide

revealed preference tests (in the shape of Suzumura consistency) for

transitive, acyclic, homothetic, and convex preferences. However, the

Suzumura consistency condition may be complicated for practical im-

plementation, which is an important difference with the papers men-

tioned in the previous paragraph. In this sense, we provide a link

between these two strands of revealed preference research. That is, we

adopt a scope of theories comparable to one presented in Demuynck

(2009), while providing a tractable and simple revealed preference ax-

iom.

Organization of the paper. The remainder of the paper is organized

as follows. We present the necessary definitions for algebraic revealed

preferences in section 2. We show our rationalizability result in section

3. We provide some concluding remarks in section 4. All proofs omitted

in the text are collected in an Appendix.

2. Preliminaries

Let X be the space of alternatives. Let R ⊆ X ×X be a preference

relation, that is a reflexive binary relation; that is, (x, x) ∈ R for every

x ∈ X. Let P (R) is the (asymmetric) strict part of the relation; that

is, P (R) = {(x, y) ∈ R : (y, x) /∈ R}. Denote by R the space of

preference relations.
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2.1. Theories about preferences. Next we present our notion of a

theory about preference relations. Our notion is meant to capture the

idea that a theory is a collection of desirable properties of preference

relations. We first discuss some usual theories to motivate our notion.

Example: Consider a theory that imposes only transitive preferences,

that is (x, y), (y, z) ∈ R implies that (x, z) ∈ R. Equivalently, if there

is a finite sequence x = s1, . . . , sn = y ∈ X such that (sj, sj+1) ∈
R for every j ∈ {1, . . . , n− 1}, then (x, y) ∈ R.

Note that transitivity imposes a particular structure over the prefer-

ence relation that admits a sequential representation. That is, (x, y) ∈
R if every pair connecting x and y also belongs to R. We will generalize

this structure and show that other usual properties can be imposed in

the same manner.

Example: Consider a theory that imposes transitive and homothetic

preferences, that is (x, y), (y, z) ∈ R implies (x, z) ∈ R and (x, y) ∈ R
if and only if (αx, αy) ∈ R for every α ∈ R++. Equivalently, if there

are sequences x = s1, . . . , sn = y ∈ X and α1, . . . , αn−1 ∈ R++ such

that (αjsj, αjsj+1) ∈ R for every j ∈ {1, . . . , n− 1}, then (x, y) ∈ R.

Like in the case of transitivity alone, imposing jointly transitivity and

homotheticity admits a sequential representation. That is, (x, y) ∈ R if

every pair (sj, sj+1) connecting x and y satisfies (fj(sj), fj(sj+1)) ∈ R
for some fj ∈ F , where F is a collection of functions satisfying f :

X → X for all f ∈ F . In the case of transitivity and homotheticity,

F is simply the collection of linear functions with positive slope. We

generalize this idea allowing for other collections of functions, so that

every allowed collection of functions F defines a theory.

First, we require the collection of functions F endowed with the

composition operator to be a group.

Definition 1. A tuple (F , ◦) is a group if it

• contains identity:

I ∈ F , where I(x) = x for every x ∈ X;
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• is closed:

f, f ′ ∈ F implies f ◦ f ′ = f ′′ ∈ F ;

• has inverse element:

∀f ∈ F ∃f−1 ∈ F such that f ◦ f−1 = f−1 ◦ f = I;

• is associative:

(f ◦ f ′) ◦ f ′′ = f ◦ (f ′ ◦ f ′′) for all f, f ′, f ′′ ∈ F .

Note that the collection of linear functions with positive slope en-

dowed with the composition operator constitutes a group. The re-

quirement of identity means that the theories we consider impose tran-

sitivity. Closedness simply allows to consider shorter sequences x =

s1, . . . , sn = y ∈ X connecting x and y. Associativity is a property of

the composition operator. The requirement of inverse element is more

substantial; intuitively, it means that if it is desirable that (x, y) ∈ R
implies (f(x), f(y)) ∈ R, then the reverse causality is desirable as well.

We also require that preference relations satisfy monotonicity. That

is, we endow X with a partial order ≥ with > being its (asymmetric)

strict part, and say a preference relation R is monotone if (x, y) ∈ ≥
implies (x, y) ∈ R and (x, y) ∈ > implies (x, y) ∈ P (R). Intuitively,

(X,≥) is a space of goods, and (x, y) ∈ > means that x is greater and

thus more desirable than y.

Definition 2. Let (F , ◦) be a group. A preference relation R is consis-

tent with theory F if it is monotone and for every pair of sequences

x = s1, . . . , sn = y ∈ X and f1, . . . , fn−1 ∈ F , such that

(fj(sj), fj(sj+1)) ∈ R for every j ∈ {1, . . . , n− 1},

we have (x, y) ∈ R.

Our notion of the theory is a specification of a universal negation of

a conjunction of atomic formula (UNCAF) axiomatizable theory from

Chambers et al. (2014).2 However, we already embed over the functions

2Our definition uses the implication operator, but we can equivalently rewrite it

in the canonical UNCAF axiomatization as follows

∀s1 ∀s2 . . . ∀sn, ¬

n−1∧
j=1

(fj(sj), fj(sj+1)) ∈ R ∧ (x, y) ∈ N(R) ∪ P (R−1)

 ,

where N(R) = {(x, y) : (x, y), (y, x) /∈ R} is the noncomparable part of the prefer-

ence relation R, and R−1 = {(x, y) : (y, x) ∈ R} is the inverse preference relation.
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the algebraic structure (group) which induces the desired properties.

Importantly, note that a theory is uniquely determined by the family

of functions F .

Our notion of theory does not include completeness, which is tech-

nically difficult to handle.3 Moreover, it is often the case that com-

pleteness does not have an empirical content in the revealed preference

framework. We discuss this point in section 3.2.

We assume that ≥ is consistent with the theory F . This is a tech-

nical, although crucial assumption. If ≥ is not consistent with the

theory, then the problem of seeking a monotone preference relation

that is consistent with F is nonsensical.

2.2. Data and Rationalization. The essence of the revealed prefer-

ence problem is to extract the (unobserved) preference relations which

generated (observed) choices over budgets. If there is such a preference

relation, then the corresponding data set (collection of choices from

budgets) is rationalizable. Next, we formally define the rationalizable

data sets.

Let B ⊆ X be a budget set, where B is any nonempty subset of

X. Let B be a collection of budgets. Let C : B → X be a choice

function. Denote by (B, C) a data set. All the results below holds for

choice correspondences; for notational simplicity we consider them as

observed via repeated singleton choices from each budget set.

Definition 3. A data set (B, C) is rationalizable with theory F if

there is a preference relation R∗ consistent with theory F such that

(x, y) ∈ R∗ for every x ∈ C(B); y ∈ B; B ∈ B.

The definition of rationalizability specifies that there is a preference

relation consistent with a given theory, such that the observed choices

can be generated by maximization of this preference relation. Note

that we abstain from any restrictions on the cardinality of the data set

and any topological structure of the space of alternatives, since we are

3Neither completeness nor non-satiation are UNCAF axioms, and therefore do

not fit the framework (see p. 2305 in Chambers et al., 2014). We abstain from

considering completeness in the main result, and directly move from non-satiation

to monotonicity.
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pursuing a purely algebraic approach. A disadvantage of this level of

generality is that we cannot talk about a utility function representing

the preference relation.

3. Results

Our main result is the equivalence between an axiom of revealed

preferences and the rationalization according to F . Denote the com-

position of f1, . . . , fn by

n

,
j=1

fj = f1 ◦ f2 ◦ . . . ◦ fn;

denote the downward closure of B by

B≥ = {x : ∃x′ ∈ B such that x′ ≥ x};

and denote the strict downward closure of B by

B> = {x : ∃x′ ∈ B such that x′ > x}.

Our revealed preference axiom follows.

Definition 4. A data set (B, C) satisfies the Algebraic Axiom of

Revealed Preferences (AARP) if for every sequence x1, . . . , xn such

that xj ∈ C(Bj) for every j ∈ {1, . . . , n} for some B1, . . . , Bn ∈ B, and

every sequence f1, . . . , fn−1 ∈ F such that fj(xj+1) ∈ B≥j for every

j ∈ {1, . . . , n− 1}, we have[
n−1
,
j=1

fj

]−1
(x1) /∈ B>

n .

AARP follows the standard logic of Generalized Axiom (GARP) but

accounting for the transformations allowed. Recall that GARP states

that if there is a sequence of chosen points such that xj+1 ∈ B≥j for

every j ∈ {1, . . . , n − 1} then x1 /∈ B>
n . Hence, we simply allow for

the transformations of every chosen point x2, . . . , xn but we require to

take the inverse of all these transformations in the implication part.

Intuitively, using monotonicity and the properties of the group (F , ◦)
we can show that the premise of the axiom implies([

n−1
,
j=1

fj

]−1
(x1), xn

)
∈ R.
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It turns out that this is the only requirement imposed by rationaliza-

tion.

Theorem 1. A data set (B, C) is rationalizable with theory F if and

only if it satisfies AARP.

Theorem 1 simply states that rationalization of the data set is equiv-

alent to the provided revealed preference axiom. As we already men-

tioned, AARP is a ready-made test which can be used with data once

the researcher defines the theory which satisfies the algebraic and log-

ical conditions we impose. Further elaborating this idea, in the fol-

lowing section we show that AARP subsumes several axioms from the

literature and that Theorem 1 generalizes existing results.

3.1. Applications. In this section we show that classical theories of

preferences fit in the framework. Note that for some of the theories we

have to introduce some extra structure over the space of alternatives

which is not necessary for the general result, but unavoidable once we

want to define the particular theory.

3.1.1. Transitive Preferences.

Definition 5. A preference relation is said to be transitive if for every

x = s1, . . . , sn = y ∈ X,

(sj, sj+1) ∈ R for every j ∈ {1, . . . , n− 1} implies (x, y) ∈ R.

We can define T = {I}. Trivially, (T , ◦) is a group, since it contains

a unique element that is the identity function. Moreover, it can be

easily seen that T is the correct theory describing transitive preferences

given the definition above. Moreover, AARP in this case is equivalent

to GARP.

Definition 6. A data set (B, C) satisfies the Generalized Axiom

of Revealed Preferences (GARP) if for every sequence x1, . . . , xn
such that xj ∈ C(Bj) for every j ∈ {1, . . . , n} for some B1, . . . , Bn ∈ B,

if

xj+1 ∈ B≥j for every j ∈ {1, . . . , n− 1}
then

x1 /∈ B>
n .
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Hence, we can obtain the seminal results of Afriat (1967), Diewert

(1973), Varian (1983), and Nishimura et al. (2017) as corollary of our

main result.

Corollary 1. A data set (B, C) is rationalizable with transitive pref-

erences if and only if it satisfies GARP.

3.1.2. Homothetic Preferences. Let X be a vector space over a fully

ordered field A, and denote by A+ the subspace of A such that all

α ∈ Ai is such that α ≥ 0.4

Definition 7. A preference relation is said to be homothetic if for

every x = s1, . . . , sn = y and every α1, . . . , αn−1 ∈ A+, such that

(αjsj, αjsj+1) ∈ R for every j ∈ {1, . . . , n− 1}, we have (x, y) ∈ R.

We can define the H = {f(x) = αx : α ∈ A+}. It is easy to see that

(H, ◦) is a group. In this case AARP is equivalent to a homothetic

axiom of revealed preferences that generalizes the one proposed by

Varian (1983), Heufer (2013), and Heufer and Hjertstrand (2019).

Definition 8. A data set (B, C) satisfies the Homothetic Axiom

of Revealed Preferences (HARP) if for every sequence x1, . . . , xn
such that xj ∈ C(Bj) for every j ∈ {1, . . . , n} for some B1, . . . , Bn ∈ B,

and every sequence α1 . . . , αn−1 ∈ A+ such that αjxj+1 ∈ B≥j for every

j ∈ {1, . . . , n− 1}, we have
x1

Πn−1
j=1αj

/∈ B>
n .

Appealing to Theorem 1 we can immediately obtain the following

corollary.

Corollary 2. A data set (B, C) is rationalizable with homothetic pref-

erences if and only if it satisfies HARP.

3.1.3. Quasilinear Preferences. Let X be a vector space over a fully

ordered field A. Denote by ei = (0, . . . , 0, 1, 0, . . . , 0) the vector with

unique 1 element in the i-th place,5 since we consider the i-th good to

be the numeraire.

4Since A is a field, it contains an element 0 such that 0 ∗ a = 0 for every a ∈ A,

with ∗ being the multiplication operator in the field A.
5Since A is a field, it contains an element 1 such that 1 ∗ a = a for every a ∈ A,

with ∗ being the multiplication operator in the field A.
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Definition 9. A preference relation is said to be quasilinear if for

every x = s1, . . . , sn = y and every α1, . . . , αn−1 ∈ A,

(sj+αjei, sj+1+αjei) ∈ R for every j ∈ {1, . . . , n−1} implies (x, y) ∈ R.

We can define Q = {f(x) = x + αei : α ∈ A}. It is easy to see that

(Q, ◦) is a group. In this case, AARP is equivalent to a quasilinear

axiom of revealed preferences that generalizes the one proposed by

Rochet (1987), Brown and Calsamiglia (2007), and Castillo and Freer

(2020).

Definition 10. A data set (B, C) satisfies the Quasilinear Axiom

of Revealed Preferences (QARP) if for every sequence x1, . . . , xn
such that xj ∈ C(Bj) for every j ∈ {1, . . . , n} for some B1, . . . , Bn ∈ B,

and every sequence α1, . . . , αn−1 ∈ A such that xj+1 + αjei ∈ B≥j for

every j ∈ {1, . . . , n− 1}, we have

x1 −
n∑

j=2

αj /∈ B>
n .

Appealing to Theorem 1 we can immediately obtain the following:

Corollary 3. A data set (B, C) is rationalizable with quasilinear pref-

erences if and only if it satisfies QARP.

3.2. Completeness. As mentioned before, our rationalization notion

does not require existence of the complete relation. We can refine the

definition of rationalization in order to include completeness as one of

the desired properties for the final relation. A preference relation is

said to be complete if for every x, y ∈ X at least one of the couples

(x, y) ∈ R or (y, x) ∈ R.

Definition 11. A data set (B, C) is completely rationalizable with

theory F if there is a complete preference relation R∗ consistent with

theory F such that

(x, y) ∈ R∗ for every x ∈ C(B); y ∈ B; B ∈ B.

In order to guarantee that complete rationalization is equivalent to

AARP, we need to refine the structure of the theory. In particular,

let f ≥ f ′ if f(x) ≥ f ′(x) for all x ∈ X. A tuple (F ,≥) is said to be

ordered if f ≥ f ′ or f ≤ f ′ for every f, f ′ ∈ F . Note that this condition
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is trivially satisfied for transitive, homothetic, and quasilinear theories,

since each of these theories depends only on a transformation uniquely

determined by a scalar.

Corollary 4. Let (F ,≥) be ordered. A data set (B, C) is completely

rationalizable with theory F if and only if it satisfies AARP.

Corollary 4 states that if in addition to (F , ◦) being a group, (F ,≥)

is fully ordered, then completeness provides no extra empirical content

with respect to the basic rationalization. This fact immediately applies

to the theories of transitive, homothetic, and quasilinear preferences.

4. Concluding remarks

We provide a comprehensive algebraic approach to revealed prefer-

ence. We show that if a theory of preferences can be axiomatized in

UNCAF form and satisfies some additional algebraic restrictions, then

it can be tested using the algebraic axiom of revealed preferences. In

addition, we show that the algebraic axiom proposed generalizes ex-

isting axioms of revealed preference including axioms for transitive,

homothetic and quasilinear preferences. Finally, we show that under

some extra conditions, completeness of preferences brings no additional

empirical content. The latter result is consistent with the observation

of Chambers et al. (2014) who mention that completeness is not an

UNCAF axiom and therefore, does not have to be falsifiable.

Our approach provides a fruitful avenue for the future research for

several reasons. First, axioms corresponding to different theories over

preferences can be immediately deduced from the algebraic axiom (as

long as the theories satisfy logical and algebraic conditions).6 Second,

further restrictions on the family of functions can deliver quite interest-

ing consequences. In particular, if the family of function (F) consists

only of linear functions, then the corresponding algebraic axiom can be

reduced to a linear programming problem. This is useful because linear

programs can be implemented even for extremely large sets of data in

a computationally efficient manner, and therefore, it became a desired

type of the testing procedure in the revealed preference theory. An

6For instance, theories that involve independence of preferences can also be in-

corporated into our framework.
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attempt at least to partially characterize the set of theories which can

be tested with linear programming is of crucial importance, because it

is the same as characterizing the set of theories which can be tested in

practice.

Appendix A. Proofs

The proof proceeds via the construction of a supplementary object

we refer to as the sequential closure, which is a function over preference

relations. The sequential closure operationalizes the notion of a theory.

Note that throughout the paper we maintain the assumption that (F , ◦)
is a group.

Definition 12. F : R → R is said to be a sequential closure,

(x, y) ∈ F (R) if and only if there are finite sequences

x = s1, . . . , sn = y ∈ X and f1, . . . , fn−1 ∈ F

such that

∀j ∈ {1, . . . , n− 1}, (fj(sj), fj(sj+1)) ∈ R.

It is readily seen that a monotone preference relation R is a fixed

point of F , that is R = F (R), if and only if it is consistent with the

theory F . In particular, if R = F (R), it follows immediately from the

definition of consistency that R is consistent with F . If R is consistent

with F , it follows immediately from the definition of sequential closure

that F (R) ⊂ R, and using the fact that F is closed under inversion,

R ⊂ F (R).

The following result clarifies the relationship between F and F .

Lemma 1. Let F : R → R be a sequential closure. Then (x, y) ∈ F (R)

if and only if (f(x), f(y)) ∈ F (R) for every f ∈ F .

Proof. Let (x, y) ∈ F (R), then there are sequences x = s1, . . . , sn =

y ∈ X and f1, . . . , fn−1 ∈ F such that

(fj(sj), fj(sj+1)) ∈ R for every j ∈ {1, . . . , n− 1}.

Consider any f ∈ F . To show that (f(x), f(y)) ∈ F (R), we construct

the following sequences:

f(x) = ŝ1 = f(s1), ŝ2 = f(s2), . . . , ŝn = f(sn) = f(y)
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and

f̂1 = [f1 ◦ f−1], f̂2 = [f2 ◦ f−1], . . . , f̂n−1 = [fn−1 ◦ f−1].

Note that F is closed under inversion, so f̂j ∈ F for j ∈ {1, . . . , n−1}.
Moreover,

(f̂j(ŝj), f̂j(ŝj+1)) = (f1(f
−1(f(sj))), f1(f

−1(f(sj+1)))) =

= (fj(sj), fj(sj+1)) ∈ R for every j ∈ {1, . . . , n− 1}.

Using the definition of sequential closure, we get (f(x), f(y)) ∈ F (R).

The inverse causality follows from a similar argument. �

In order to develop our argument we need to prove that the sequential

closure exhibits several convenient properties.

Lemma 2. If F : R → R is a sequential closure, then it is

– increasing: for all R ∈ R, R ⊆ F (R),

– monotonic: for all R,R′ ∈ R, if R ⊆ R′, then F (R) ⊆ F (R′),

– idempotent: if for all R ∈ R, F (F (R)) = F (R),

– algebraic: for all R ∈ R and all (x, y) ∈ F (R), there is a

finite relation R′ ⊆ R such that (x, y) ∈ F (R′),

– and induces transitivity: F (R) = T (F (R)).

Proof. F is increasing.

Recall that I ∈ F . Hence, for every (x, y) ∈ R there is a sequence

x = s1, s2 = y and f1 = I, such that I(x, y) ∈ R, and therefore

(x, y) ∈ F (R).

F is monotonic.

Take (x, y) ∈ F (R). Then there are sequences x = s1, . . . , sn = y ∈
X and f1, . . . , fn−1 ∈ F such that fj(sj, sj+1) ∈ R ⊆ R′. Since

fj(sj, sj+1) ∈ R′ for every j ∈ {1, . . . , n− 1}, we have (x, y) ∈ F (R′).

F is idempotent.

Note that from the fact that F is increasing we know that F (R) ⊆
F (F (R)). Hence, we are left to show that F (F (R)) ⊆ F (R). Consider

(x, y) ∈ F (F (R)), and note that that by the definition of sequential

closure there are sequences x = s1, . . . , sn = y and f1, . . . , fn−1 such
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that

(fj(sj), fj(sj+1)) ∈ F (R) for every j ∈ {1, . . . , n− 1}.

Using Lemma 1, we can substitute each fj with I, giving

(sj, sj+1) ∈ F (R).

But then there are sequences sj = sj1, . . . , s
j
nj

and f j
1 , . . . , f

j
nj−1

∈ F
such that

(f j
k(sjk), f j

k(sjk+1)) ∈ R for every k ∈ {1, . . . , nj − 1}.

Merging all such sequences in one, it follows that (x, y) ∈ F (R). There-

fore, F (F (R)) ⊆ F (R).

F is algebraic.

Consider a relation R and an element (x, y) ∈ F (R), then there are

sequences x = s1, . . . , sn and f1, . . . , fn−1 such that fj(sj, sj+1) ∈ R.

Let D = {s1, . . . , sn} and let R′ = R ∩ (D ×D). Then, (x, y) ∈ F (R′)

and R′ is finite by definition.

F induces transitivity.

Using I ∈ F , it is easy to check that T (R) ⊆ F (R). Given that T is

also increasing and monotonic (since (T , ◦) is trivially a group), then

(1) F (R) ⊆ T (F (R)), and idempotence of F implies (2) T (F (R)) ⊆
F (F (R)) = F (R). Hence, T (F (R)) = F (R).

�

Next we need to introduce the notion of extension of one preference

relation by another. Let R � R′ (R′ is an extension of R) if R ⊆ R′

and P (R) ⊆ P (R′). In addition, we introduce the operationalizable

version of the same definition.

Lemma 3 (Demuynck (2009); Freer and Martinelli (2019)). Let R ⊆
R′. R � R′ if and only if P−1(R) ∩R′ = ∅.

Finally, for a given data set (B, C), we introduce the revealed pref-

erence relation denoted by RE, such that (x, y) ∈ RE if x ∈ C(B)

and y ∈ B for some B ∈ B or if x = y. (Since RE is reflexive, it is a

preference relation.)
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A.1. Proof of Theorem 1. Recall that a monotone preference rela-

tion R is consistent with F if and only if R it is a fixed point of F ,

that is F (R) = R.

Lemma 4. A data set (B, C) is rationalizable if and only if ≥ �
F (RE ∪ ≥).

Proof. (⇒) On the contrary, assume (B, C) is rationalizable but it is

not the case that ≥ � F (RE ∪ ≥). Appealing to Lemma 3, then there

exists some (z, w) such that (w, z) ∈ > and (z, w) ∈ F (RE ∪ ≥). Since

(B, C) is rationalizable, there is a monotone preference relation R∗ that

is consistent with theory F and such that

(xj, y) ∈ R∗ for every xj ∈ C(Bj); y ∈ Bj for every Bj ∈ B.

Hence, RE ∪ ≥ ⊆ R∗ and ≥ � R∗. Moreover, since R∗ is consistent

with theory F , it is a fixed point of F , i.e. F (R∗) = R∗. Therefore,

given that F is monotonic, we have F (RE ∪ ≥) ⊆ F (R∗) = R∗. Hence,

(z, w) ∈ R∗ implying ≥ ∩ R∗ 6= ∅, which contradicts the fact that R∗

is monotone.

(⇐) Let R̃ = F (RE ∪ ≥). R̃ is monotone since ≥ � F (RE ∪ ≥). Since

F is increasing, RE ⊆ R̃ that is (x, y) ∈ R̃ if x ∈ C(B) and y ∈ B for

every B ∈ B. Finally, since F is idempotent,

F (R̃) = F (F (RE ∪ ≥)) = F (RE ∪ ≥) = R̃,

that is R̃ is a fixed point of F . Therefore, R̃ is consistent with the

theory. �

Next, we show that AARP is equivalent to ≥ � F (RE ∪ ≥). Before

we proceed, we introduce two auxiliary results. The first deals with the

nature of the fixed points of the sequential closure, while the second

deals with the nature of the shortest sequence adding any (x, y) ∈ X2

to F (RE ∪ ≥).

Lemma 5. Let F : R → R be a sequential closure and let R be a fixed

point of F . Then (x, y) ∈ P (R) implies (f(x), f(y)) ∈ P (R) for every

f ∈ F .

Proof. From Lemma 1, (x, y) ∈ P (R) ⊆ R implies (f(x), f(y)) ∈ R =

F (R) for every f ∈ F . To see this, note that (F , ◦) is a group and
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therefore, f−1 ∈ F . Hence, by construction of the sequential closure

we can infer that there are sequences s1 = f(x), s2 = f(y) and f1 =

f−1 such that (x, y) = ([f−1 ◦ f ](x), [f−1 ◦ f ](y)) ∈ R and therefore

(f(x), f(y)) ∈ F (R) = R since R is a fixed point of F .

Next we show that (f(y), f(x)) /∈ R, completing the proof. On the

contrary, suppose (f(y), f(x)) ∈ R. We can construct the sequence

y = s1 and s2 = x, and let f1 = f so that (f(y), f(x)) ∈ R and hence

(y, x) ∈ F (R) = R, contradicting (x, y) ∈ P (R).

�

Lemma 6. Let F : R → R be a sequential closure and (s1, . . . , sn)

and (f1, . . . , fn−1) be any of the shortest pairs of sequences adding

(x, y) ∈ X × X to F (RE ∪ ≥). Then, for every j ∈ {1, . . . , n − 2},
(fj(sj), fj(sj+1)) ∈ ≥ implies (fj+1(sj+1), fj+1(sj+2)) ∈ RE.

Proof. Assume (fj(sj), fj(sj+1)) ∈ ≥ and (fj+1(sj+1), fj+1(sj+2)) /∈ RE

for some 1 ≤ j ≤ n − 3. It follows that (fj+1(sj+1), fj+1(sj+2)) ∈ ≥.

From ≥ = F (≥), we have (sj, sj+1) ∈ ≥ and (sj+1, sj+2) ∈ ≥. Since ≥
is transitive, we can shorten the sequence by omitting sj+1 and using

(sj, sj+2) ∈ ≥ and (fj+2(sj+2), fj+2(sj+3)) ∈ RE ∪ ≥. This contradicts

the fact that the original sequence is shortest.

�

Using the results above we show that AARP is equivalent to the

consistency of revealed preference relation.

Lemma 7. Let F be a sequential closure. A data set satisfies AARP

if and only if >−1 ∩ F (RE ∪ ≥) = ∅.

Proof. (⇐) Assume on the contrary that there is a violation of AARP.

That is, there is a sequence x1, . . . , xn such that xj ∈ C(Bj) for every

j ∈ {1, . . . , n} for some B1, . . . , Bn ∈ B, and a sequence f1, . . . , fn−1 ∈
F such that fj(xj+1) ∈ B≥j for every j ∈ {1, . . . , n− 1}, but[

n−1
,
j=1

fj

]−1
(x1) ∈ B>

n .

To proceed with the proof, note that fj(xj+1) ∈ B≥j implies that

there is yj such that (xj, yj) ∈ RE and (yj, fj(xj+1)) ∈ ≥.
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We construct a sequence s1, . . . , s2n−1 as follows. Let

s2j−1 =

[
n−1
,
k=j

fk

]−1
(xj) and s2j =

[
n−1
,
k=j

fk

]−1
(yj),

for j ∈ {1, . . . , n − 1}, and let s2n−1 = xn. Next, we construct a

sequence of functions f̂1, . . . , f̂2n−2, where

f̂2j−1(x) = f̂2j(x) =

[
n−1
,
k=j

fk

]
(x)

for j ∈ {1, . . . , n− 1}.
For any j ∈ {1, . . . , n − 1}, consider the triple s2j−1, s2j, s2j+1. We

have

(f̂2j−1(s2j−1), f̂2j−1(s2j))

=

([
n−1
,
k=j

fk

]
◦
[
n−1
,
k=j

fk

]−1
(xj),

[
n−1
,
k=j

fk

]
◦
[
n−1
,
k=j

fk

]−1
(yj)

)
= (xj, yj) ∈ RE,

and

(f̂2j(s2j), f̂2j(s2j+1))

=

([
n−1
,
k=j

fk

]
◦
[
n−1
,
k=j

fk

]−1
(yj),

[
n−1
,
k=j

fk

]
◦
[

n−1
,

k=j+1
fk

]−1
(xj+1)

)
= (yj, fj(xj+1)) ∈ ≥ .

Since (F , ◦) is a group we have f̂2j−1(x), f̂2j(x) ∈ F , which in turn

implies (s1, s2n−1) = (s1, xn) ∈ F (RE ∪ ≥).

Using the premise

s1 =

[
n−1
,
k=1

fk

]−1
(x1) ∈ B>

n ,

there is yn ∈ Bn such that (yn, s1) ∈ >. Moreover, (xn, yn) ∈ RE by

construction of the revealed preference relation. Given that F (R) is

transitivity inducing, (s1, yn) ∈ F (RE ∪ ≥). But then

(s1, yn) ∈ >−1 ∩ F (RE ∪ ≥),

implying >−1 ∩ F (RE ∪ ≥) 6= ∅.
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(⇒) On the contrary, assume that there is a violation of consistency,

i.e. there is (z, w) ∈>−1 ∩ F (RE ∪ ≥). Consider any shortest sequence

adding (z, w) to F (RE ∪ ≥), that is z = s1, . . . , sn = w such that

(fj(sj), fj(sj+1)) ∈ RE ∪ ≥ for every j ∈ {1, . . . , n− 1} and fj ∈ F .

By definition, for every j such that (fj(sj), fj(sj+1)) ∈ RE there is

some Bj ∈ B such that fj(sj) ∈ C(Bj) and fj(sj+1) ∈ Bj. For every j

such that (fj(sj), fj(sj+1)) ∈ RE, define

mj = |{sl : (fl(sl), fl(sl+1)) /∈ RE and l < j}| .

We now build a sequence x1, . . . , xm and a sequence B̂1, . . . , B̂m

where m = n−mn and

xj−mj
= fj(sj) and B̂j−mj

= Bj

for every j ∈ {1, . . . , n − 1} such that (fj(sj), fj(sj+1)) ∈ RE, and

xm = fn−1(sn) and B̂m = {fn−1(sn)}.
Similarly, let f̃j−mj

= fj for every j ∈ {1, . . . , n − 1} such that

(fj(sj), fj(sj+1)) ∈ RE and f̃m = I (the identity function), and define

f̂k = f̃k ◦ f̃−1k+1

for k ∈ {1, . . . ,m− 1}.
Note that for every k ∈ {1, . . . ,m} we have xk ∈ C(B̂k). We claim

f̂k(xk+1) ∈ B≥k for every k ∈ {1, . . . ,m−1}. To see this, note that given

the structure of the original sequence described in Lemma 6, either

(1) xk = fj(sj) and xk+1 = fj+1(sj+1) for some j ∈ {1, . . . , n− 1},
with (fj(sj), fj(sj+1)) ∈ RE, or

(2) xk = fj(sj) and xk+1 = fj+2(sj+2) for some j ∈ {1, . . . , n− 2},
with (fj(sj), fj(sj+1)) ∈ RE and (fj+1(sj+1), fj+1(sj+2)) ∈ ≥.

In case (1), the result is immediate since

f̂k(xk+1) = [fj ◦ f−1j+1](fj+1(sj+1)) = fj(sj+1) ∈ Bj = B̂k.

In case (2), we can appeal to ≥ = F (≥) to show that fj(sj+1) ≥
fj(sj+2). Hence,

f̂k(xk+1) = [fj ◦ f−1j+2](fj+2(sj+2)) = fj(sj+2) ∈ B≥j = B≥k .
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Finally, note that[
m−1
,
k=1

f̂k

]−1
=
[
[f̃1 ◦ f̃−12 ] ◦ [f̃2 ◦ f̃−13 ] ◦ · · · ◦ [f̃m−2 ◦ f̃−1m−1]

]−1
=

= [f̃1 ◦ f̃−1m ]−1 = f̃m ◦ f̃−11 .

Since (fn−1(sn−1), fn−1(sn)) ∈ RE, we have f̃m−1 = fn−1. Given

lemma 6(1), either

(1) f̃1 = f1, or (2) (f1(s1), f1(s2)) ∈ ≥ and f̃1 = f2.

We build a contradiction to AARP for each case. In case (1), we

have [
m−1
,
k=1

f̂−1k

]
(x1) = fn−1(z).

Using ≥ = F (≥) and (w, z) ∈ >, we have fn−1(w) > fn−1(z). Recall

that B̂m = {fn−1(sn)} = {fn−1(w)}. Thus,[
m−1
,
k=1

f̂−1k

]
(x1) ∈ B̂>

m,

a contradiction with AARP.

In case (2), we have[
m−1
,
k=1

f̂−1k

]
(x1) = fn−1(s2) and (f1(s1), f1(s2)) ∈ ≥ .

Using ≥ = F (≥) and (w, z) ∈ >, we have

fn−1(w) > fn−1(z) = fn−1(s1) ≥ fn−1(s2).

Thus, [
m−1
,
k=1

f̂−1k

]
(x1) ∈ B̂>

m,

a contradiction with AARP. �

Proof of Theorem 1. From Lemma 3, ≥ � F (RE ∪ ≥) if and only

if P−1(R) ∩ F (RE ∪ ≥) = ∅. From Lemma 4, a data set (B, C) is

rationalizable if and only if ≥ � F (RE ∪ ≥). Finally, from Lemma 7,

P−1(R) ∩ F (RE ∪ ≥) = ∅ if and only if AARP holds. �
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A.2. Proof of Corollary 4. Note that the proof of Theorem 1 shows

that AARP is equivalent to the partial rationalization of the data.

Equivalently, there is a monotone preference relation R∗ that is a fixed

point of F and that subsumes the revealed preference relation. To

prove the corollary, we need to show that there is a complete prefer-

ence relation R̂ that is a fixed point of F and R∗ � R̂. For this purpose

we use Demuynck (2009) extension theorem, which requires us to in-

troduce an additional property. Let N(R) = (X × X)\(R ∪ R−1) be

the incomparable part of R.

Definition 13. A function F : R → R is said to be weakly expansive if

for any ≥ � R = F (R) and N(R) 6= ∅ there is a nonempty S ⊆ N(R)

such that ≥ � F (R ∪ S) and R ∪ S � F (R ∪ S).

If F is weakly expansive, we can appeal to Demuynck (2009) exten-

sion theorem.

Lemma 8 (Demuynck (2009) Extension Theorem). Let F : R → R be

a weakly expansive, increasing, monotonic, idempotent, and algebraic

function. There is a complete, fixed point extension of R if and only if

R � F (R′) for some R′ ⊇ R.7

Recall that a relation is consistent with the theory if and only if it is

a fixed point relation. Hence, a complete, fixed point extension is the

object of interest.

It remains to be shown that any fully ordered theory generates a

weakly expansive closure.

Lemma 9. If a function F : R → R is an ordered sequential closure,

then it is weakly expansive.

Proof. Take some R such that ≥ � R = F (R) and some (x, y) ∈ N(R),

and let R′ = R ∪ {(x, y)}. From Lemma 3, it is enough to show that

>−1 ∩ F (R′) = ∅ and P−1(R′)∩ F (R′) = ∅ . On the contrary, assume

(z, w) ∈ (>−1 ∪ P−1(R′)) ∩ F (R′).

Since (z, w) ∈ F (R′), there are sequences z = s1, . . . , sn = w and

f1, . . . , fn−1 such that (fj(sj), fj(sj+1)) ∈ R′. We consider any shortest

7We have modified the statement of the theorem to suit our notation, but this is

equivalent to theorem 2 in Demuynck (2009); see also Freer and Martinelli (2019).
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sequence. Next, we prove two properties of such sequences.

Claim: ∃k ≤ n− 1 such that (fk(sk), fk(sk+1)) = (x, y).

On the contrary, assume there is no such k. Then, (fj(sj), fj(sj+1)) ∈ R
for all j ≤ n − 1, since R′ \ R = {(x, y)}. The construction of the se-

quence implies then that (z, w) ∈ F (R). This is a contradiction since

(z, w) ∈ >−1 implies (w, z) ∈ > ⊆ P (R) = P (F (R)), and similarly

(z, w) ∈ P−1(R) implies (w, z) ∈ P (R) = P (F (R)).

Claim: (x, y) appears in every shortest sequence only once.

Assume on the contrary that (x, y) enters the sequence more than once;

that is, there are k < l < n such that (fk(sk), fk(sk+1)) = (x, y) =

(fl(sl), fl(sl+1)). Without loss of generality, suppose these are the first

and the second time that (x, y) enters into the sequence. Recall that

we consider a set of ordered functions. Hence, either fk > fl or fk ≤ fl.

We consider the two cases separately.

Case 1: fk ≤ fl. Since fk ≤ fl means that fk(x) ≤ fl(x) for every

x ∈ X, then f−1k ≥ f−1l . The latter fact implies (sk+1, sl+1) ∈ ≥ ⊆ R′.

Hence, if l > k + 1, the sequence can be shortened by eliminating sl.

That is, if the original sequence is such that

. . . , (fk(sk), fk(sk+1)) = (x, y) ∈ R′, . . . , (fl(sl), fl(sl+1)) = (x, y) ∈ R′, . . .

we can use instead

. . . , (fk(sk), fk(sk+1)) = (x, y) ∈ R′, (sk+1, sl+1) ∈ ≥ ⊆ R′, . . . .

This contradicts the assumption that the original sequence is one of

the shortest.

If instead l = k + 1, using fk(sk) = fl(sl) = x and fk(sk+1) =

fl(sl+1) = y, we get sk ≥ sl = sk+1 ≥ sl+1. Thus, (sk, sl+1) ∈ ≥ ⊆ R′,

and the initial sequence can be shortened by eliminating sl = sk+1.

Case 2: fk > fl. In this case, we have f−1k < f−1l , which in turn

implies (sl, sk) ∈ > ⊂ R. Since k, l correspond to the first and the sec-

ond time that (x, y) appears in the sequence, we know that for every
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h such that l < h < k, (fh(sh), fh(sh+1)) 6= (x, y) and hence by con-

struction (fh(sh), fh(sh+1)) ∈ R = F (R). Combining two facts above

and taking into account that F is transitivity inducing, we obtain that

(sk+1, sk) ∈ R = F (R). Therefore, (y, x) = (fk(sk+1), fk(sk)) ∈ R,

which contradicts the premise that (x, y) ∈ N(R).

Given the two claims above we can complete the proof of the Lemma

by considering one of shortest sequences with (fk(sk), fk(sk+1)) = (x, y)

and with the rest of the elements of the sequence being such that

(fj(sj), fj(sj+1)) ∈ R for every j 6= k. Hence, (sk+1, w); (z, sk) ∈ R =

F (R). Given that either (w, z) ∈ > ⊆ R or (w, z) ∈ P (R) ⊂ R, we

have (sk, sk+1) ∈ R = F (R). Therefore, (x, y) = (fk(sk), fk(sk+1)) ∈
R = F (R), which contradicts the premise that (x, y) ∈ N(R). �
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