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Growing Stars: A Laboratory Analysis of Network Formation 

 

 

Abstract: The acquisition and dispersion of information, a critical aspect of economic decisions, 

can occur through a network of agents (Jackson, 2009).  Empirical and theoretical findings 

suggest that an efficient information dispersion network takes the form of a star: small numbers 

of agents gather information and distribute it to a large group. Controlled tests of this theory, 

however, have typically found little evidence of star network emergence. An exception is Goeree 

et al (2009), which reports reliable star network formation in an environment that includes ex 

ante heterogeneous agents. While heterogeneity may explain network formation sometimes, it 

seems to play a smaller role in other cases (Feick and Price, 1987; Conley and Udry, 2010). In 

this paper we investigate whether specific institutional conditions promote star network 

formation with ex ante homogeneous agents. We  find  that  investment  limits  and  the  “right-of-

first-refusal,”  both  of  which  are institutions that stabilize decision making, have a surprising 

ability to promote star network formation. Further, using a cluster analysis that allows us to draw 

inferences about individuals’  behavioral rules, we find that these effective institutions encourage 

individual rationality as well as positive habits. We argue that these decision rules emerge due to 

the stabilizing features of the institutions and this stability facilitates improved network 

behaviors and outcomes. 
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I. Introduction 

How information is initially acquired and subsequently dispersed among people is widely studied 

in economics (Rogers, 1995). In many relevant contexts, it occurs through networks of agents 

(Jackson, 2009). Empirical and theoretical findings suggest that efficient information networks 

take the form of a star: small numbers of agents gather information and then distribute it to a 

larger group (Weimann, 1994; Bala and Goyal, 2000; Galeotti and Goyal, 2010). Despite the 

theoretical advances, one persistent challenge has been discovering the conditions under which 

star networks emerge within controlled laboratory environments. One way to reliably generate 

star networks is to incorporate ex ante agent heterogeneity (Goeree, et al, 2009). Although this 

condition explain the formation of star networks in many cases, it is possible they will be less 

important in other naturally occurring network environments (Feick and Price, 1987; Conley and 

Udry, 2010). Our paper addresses the question of whether specific naturally occurring 

institutions, and particularly those that work to add stability to the network environment, may 

promote star network emergence in  the presence of homogeneous agents.  

 The earliest works on star networks date back to the 1950s. In their pioneering paper, 

Katz  and  Lazersfeld  (1955)  coined  the  term  “opinion  leaders”  to  describe  a  small  subset  of  

highly connected people1. Half a century later, studies continue to provide empirical support for 

the existence of opinion leaders in politics and marketing (Weimann, 1994; Katz and Lazersfeld, 

2006).  Opinion leaders clearly make a difference. For instance, empirical evidence has shown 

that words from opinion leaders boost sales of consumer products (Godes and Mayzlin, 2009), 

contribute to the prevention of AIDS (Kelly et al, 1992), and transmit political thought and ideas 

(Roch, 2007). Given importance of the opinion leaders in disseminating information, people in 

both the private and public sectors are eager to discover how to locate and influence the star 

center (Iyengar et al, 2008). A deeper understanding of the emergence and characteristics of star 

networks, a stylized opinion leader network, could help to facilitate such efforts.    

                                                           
     For helpful comments we thank Jacob Goeree, Charles Plott, Arno Riedl, Aljez Ule, Tyler Cowen, Carlos 
Ramirez, OmarAl-Ubaydli, Fangfang Tan, Boris van Leeuwen and our colleagues at ICES, George Mason 
University, seminar participants at Workshop on Experiments and Econometrics at Berlin (2011), the ESA 
international meeting (2012), University of Arkansas (2012), Higher School of Economics, Moscow (2012) and 
Stanford Institute of Theoretical Economics workshop (Segment 5, 2012). We are grateful to the Interdisciplinary 
Center for Economic Science (ICES) for funding this research. The authors are of course responsible for any errors 
in this paper.  
1 The  concept  of  “influentials”  can  largely be used interchangeably (Merton, 1968; Gladwell, 2000). 
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  Research on star networks connects to the empirical literature on so-called scale-free 

networks. Loosely speaking, a network is denoted as scale-free when the majority of nodes have 

only a small number of links, and a small minority of nodes have a very large number of links. 

For example, collaboration networks are scale free. The distribution of both the number of 

citations a paper receives and the number of coauthors a researcher has tends to follow a power 

law distribution; indicating that a small number of papers and researchers play a central role in 

the scientific world.  Another example is Internet Pagerank networks. These networks are scale-

free in the sense that a small number of web pages have a disproportionately high likelihood of 

being mentioned by other pages. Yet another example is Twitter: most twitter users obtain 

information from a very small number of people in their network.2 Star networks are scale-free 

networks. Understanding how star networks emerge in the laboratory can inform the growth, 

efficiency and stability of scale-free networks in natural environments. 

Theoretical studies of star networks have shown that under certain conditions, star 

networks emerge endogenously and include efficient and stable equilibria (Bala and Goyal, 2000; 

Galeotti and Goyal, 20103). Certain crucial conditions underlie the formation of equilibrium star 

networks, namely that: (1) information can be shared (meaning it is non-rival); and (2) agents are 

able to form links unilaterally4. While strong, these conditions are easily implementable in 

laboratory tests and are attractive in that many environments where information dispersion is 

important are characterized by these conditions5.  

To investigate star-network formation, economists have begun to collect laboratory data 

from participants in various network environments (Callander and Plott, 2005; Falk and Kosfeld, 

2003; Goeree et al, 2009). Loosely speaking, in a typical network formation experiment, players 

decide  how  to  form  “links”  with  other  players  in  light  of  the  benefits  those  links  confer.  These 

studies have not always, however, succeeded in discovering star networks6. To our knowledge, 

                                                           
2 Detailed examples of scale-free networks could be found at (Barabasi, 2004). 
3 Some non-game-theoretical models of star network formation build upon preferential attachment and study the 
behavior of large networks (Barabasi and Albert, 1999; Jackson and Rogers, 2007). A direct test of those models 
needs validation of its behavioral assumptions, which is difficult to achieve with a lab experiment. 
4 Jackson and Wolinsky (1996) discussed two cases in which those two conditions are lacking. They found that 
network efficiency and stability is hard to achieve under regular payoff functions. 
5 Knowledge generated in academia is one example. Open source software is another example. This excludes cases 
where information is protected by IPR and dispersion of that information requires bilateral agreements such as those 
found in some enforceable contracts. 
6 Falk  and  Kosfeld  (2010)  found  equilibrium  “wheel”  networks to emerge, but were not able to observe the 
formation of equilibrium star networks. 
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the single exception is Goeree et al (2009), which finds star networks to emerge reliably in the 

presence of ex ante agent heterogeneity. The authors argue that this heterogeneity promoted star 

networks by simplifying the network coordination problem.  

 Ex ante heterogeneity may help to explain the emergence of networks in many 

environments (e.g., co-authorship), but may not be the entire solution in other naturally occurring 

network environments (Feick and Price, 1987; Conley and Udry, 2010). Consequently, here we 

investigate network formation in the presence of ex ante homogeneous agents. In particular, we 

study whether certain naturally-occurring institutional features may promote star-network 

formation. 

 We study institutions that we expect to add temporal  “stability”  to decisions, in the sense 

of reducing period-to-period changes in the decisions people make. Agent heterogeneity plays 

this role, in that people who have an advantage in investing or linking may be more likely to so 

repeatedly, and others may be more able to form accurate expectations about their play. As we 

argue below, institutions can also play this role, and in doing so promote the emergence of star 

networks even in the absence of heterogeneity or other sorts of focal points.  

We collect data from laboratory experiments to examine whether efficient star network 

formation can be promoted by adding stability to the environment with the following institutions: 

(1) sequential decisions; (2) investment limits (effectively, budget constraints); and (3) “right  of  

first refusal,” which ensures that investors are able, should they desire to do so, to continue their 

investments.   

Each of the institutions we investigate may  stabilize  people’s  decisions  in  networks. This 

may explain why these institutions seem connected to the emergence of naturally occurring 

networks. For example, online networking sites, such as Facebook or Twitter, regularly ask 

current users to invite their friends to join the site, and then those friends ask their friends. We 

incorporate sequential decisions into our experiment design.  

Investment limits are a regular feature of natural network environments, as (1) 

technologies are too expensive to allow repeated R&D investment (Dimasi et al, 2003; Dimasi 

and Grabowski, 2007) and (2) government policies exist to prevent wasteful repeated 

investments (Tran, 2009). Moreover, when personal relationships are at stake, information 

investment may face natural constraints with regard to time or distance (Marsden and Campbell, 

1984). In this paper, investment limits are modeled as a type of individual budget constraints.  
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The  “right  of  first  refusal”  (which we denote by RFR) is a business contract where the 

privilege of investment is granted to an investor who has invested in the immediate past. Aside 

from being a common business practice, RFR emerges regularly whenever economic outcomes 

favor persistent investments on one agent rather than the spreading of resources across multiple 

smaller investments, which is of course a characteristic of star networks. Take, for instance, the 

situation in which low income families in developing countries decide which child to send to 

school; firms choosing which employees to give additional training; or funding agencies 

selecting which scholars’  projects  to  fund. In each of these cases, the predictability of the 

investor’s  identity  serves  as  the  coordination  device  that  may  facilitate star network formation. 

Our experiment design allows us to vary the existence of RFR and measure its impact on 

network stability and star network formation.  

The key finding of our paper is that star networks can reliably emerge with ex ante 

homogeneous agents. As noted above, this complements previous findings by Goeree et al (2009) 

and helps to explain the emergence of star networks in natural environment where agent 

heterogeneity may play a smaller role. In particular, we find that combining investment limits 

with RFR generates robust star networks, and  that  these  networks  are  “stable”  in  the  sense  that  

they tend rapidly to reemerge after falling into disequilibrium. The effect persists in either 

simultaneous or sequential decision environments. Moreover, investment limits alone generate 

about half of the equilibrium outcomes compared to when they are combined with the RFR. 

Surprisingly, sequential decision alone does not seem to promote equilibrium networks.  

We also examine individual decision rules using cluster analysis and find that the 

behavior of our lab subjects separates into clearly defined behavioral clusters. We then 

investigate how different institutions may shift subjects into different types of behavioral rules. 

Our analysis demonstrates that investment limits in simultaneous decision environments promote 

the formation of positive habits, which translate into more frequent coordination in star networks. 

Investment limits in sequential environments generate frequent star networks, largely due to the 

fact that agents are more likely to follow the rule of rationality predicted by the theory. 

Our investigation provides both methodological and substantive contributions. 

Methodologically, we use cluster analysis to distinguish different behavioral rules used by 

subjects. These differences help to explain why different institutions lead to different levels of 

star network formation. To our knowledge, we are the first to implement cluster analysis to shed 



7 
 

light on the behavioral rules used in social networks, and the first to explain institutional impacts 

in social network formation environments using these behavioral rules. 

Substantively, the findings of our paper have direct implications for information 

dispersion, which is especially relevant to, e.g., the technology and agricultural sector. Our 

results suggest that: (1) difficulties with coordination may lead to undesirable network outcomes; 

and (2) institutional features that promote sustained investment by a single individual facilitate 

the formation of efficient networks.  

 The remainder of the paper is organized as follows: The next section briefly reviews the 

theoretical and experimental literature on network formation. Section 3 lays out the theoretical 

background of the study. Section 4 presents the experimental design and procedure, and sets up 

the hypothesis.  Section 5 reports experimental results. Section 6 discusses cluster analysis. 

Section 7 concludes. 

 

II. Literature Review 

II.1 Theoretical work on star network formation 

Many theoretical studies have attempted to shed light on the process of network 

formation in general (Jackson, 2003), and recently specific theoretical progress has been made 

on understanding the conditions under which star networks can form (Bala and Goyal, 2000; 

Bramoulle et al, 2004; Galeotti and Goyal, 2010). For all the cases that we study in this paper, 

equilibrium star networks are also efficient. Star networks feature asymmetry in equilibrium 

actions by participants, because it pays to send links when others invest and vise versa. Note that 

this environment is characterized  by  “strategic  substitutes”,  and  includes  in  general  both anti-

coordination games and games related to public goods provision7.  

An early paper by Bala and Goyal (2000) studied an environment with non-rival network 

goods and the possibility of forming links unilaterally. They found that star networks emerge in 

equilibrium only when the benefit of information flows between two agents regardless of who 

sends the link8. Their study was followed by Bramoulle et al (2004), who examined network 

formation in an anti-coordination game. They found that the shape of the equilibrium network 

                                                           
7 Bramoulle and Kranton (2007) discussed public goods provision in network settings extensively. However, 
networks in their study are exogenous. 
8 In their model, if only the link sender receives information from the link receiver, the equilibrium network is a 
wheel. 
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need not be a star; with the exact network shape depending on the cost of link formation. More 

recently, a study by Galeotti and Goyal (2010) extended the model of Bala and Goyal (2000) by 

endogenizing the choice to invest. Their study showed that star networks emerge in equilibrium 

as well9. These advances of course leave open the question of whether the conditions required by 

theory are sufficient to generate star networks reliably in a controlled laboratory environment.  

We now turn to a detailed review of the empirical studies of network formation in the 

laboratory. 

 

II.2 Experiments on star network formation 

Despite the abundance of empirical evidence related to star networks10, we are aware of 

only four experimental studies on star network formation (Callander and Plott, 2005; Falk and 

Kosfeld, 2003; Berninghaus et al, 2007; Goeree et al, 200911). Falk and Kosfeld (2003) tested the 

theory of Bala and Goyal (2000). In particular, they studied whether and how equilibrium 

networks can form under “one-way”  and  “two-way”  information  flows. In contrast with 

theoretical predictions, they found that when information flows two ways the network fails to 

converge to a star. They concluded that the need for asymmetric strategies combined with 

inequality aversion might contribute to the difficulty in realizing star networks. 

Callander and Plott (2005) also tested Bala and Goyal (2000) in the lab. They considered 

various conditions that differed in terms of the linking cost, as well as the value of information. 

They also examined the impact of having network agents with heterogeneous payoff structure, an 

issue unaddressed by the model. Their main finding was that star networks did not consistently 

emerge under theoretical conditions, and that even introducing payoff heterogeneity did not lead 

to systematic formation of star networks. Consequently, they report  that  “significant  and  

persistent  inefficiency”  is  a  feature  of  all  of  their  network environments. 

Berninghaus et al (2007) provided yet another test of Bala and Goyal (2000) but focused 

on the comparison between discrete and continuous time environments. In the discrete 

environments, their results show that players have a tendency to reduce network distance over 

                                                           
9 Galeotti and Goyal (2010) predicts peripheral-sponsored stars, while center-sponsored stars are predicted in the 
decay free model of Bala and Goyal (2000) and Bramoulle et at (2004). 
10See Katz and Lazarsfeld (1955), Rogers (1995), Valente (1995) 
11 Experimental studies on endogeneous networks other than star networks include Deck and Johnson (2004), Ule 
(2005), Corbae & Duffy (2008), Knigge & Buskens (2010), Berninghaus et al (2011). 
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time. However, the overall average frequency of star networks found in their data (11.33%) is no 

greater than what we report below in our baseline environment.12  

In light of the complications with generating star networks, and following Callander and 

Plott (2005), Goeree et al (2009) explored whether common knowledge of agent heterogeneity 

combined with two-way information flows might promote star networks. They reported that: (1) 

compared to homogeneous agent treatments, significantly more stars are observed when  agents’  

payoffs are heterogeneous13; and (2) perfect information about the nature of heterogeneity plays 

an important role in facilitating the coordination on star networks.  

Like the above studies, we explore what conditions may facilitate the emergence of star 

networks. But in contrast, our study emphasizes the importance of homogeneous agent 

assumption and explores how institutional characteristics may impact network formation in 

presence of agent homogeneity. 

 While Callander and Plott (2005) and Goeree et al (2009) demonstrated the importance of 

individual heterogeneity in network environments, there may be some environments where 

individual differences play a smaller role. For instance, information about heterogeneity may not 

always be easily available in natural environments, due to the fact that it goes unobserved. 

Indeed, substantial empirical research on market mavens has found no differences between the 

observable characteristics of agents who play different roles in the network (Feick and Price, 

1987; Geissler and Edison, 2005; Wiedman et al, 2001; Williams and Slama, 1995). Others have 

pointed out that obtaining information about the costs and benefits of other network agents in 

agricultural environment may be difficult, given that people have an incentive to conceal their 

private information (Conley and Udry, 2010). Moreover, ex ante agent heterogeneity is not 

required by theory for star network emergence14.  

In view of the fact that individual-level information is costly and sometimes infeasible to 

obtain, and to avoid introducing artificial focal points, we design our experiments to include ex 
                                                           
12 Due to the design of the continuous environments in their study as well as Berninghaus et al (2006), the results 
could not be easily compared with data from discrete environments. In this study, we focus on discrete environments. 
13 According to their experimental data, the heterogeneity on cost of linking does not seem to significantly promote 
star network formation. 
14 Jackson and Lopez-Pintado (2011), Larrosa and Tahme (2011), and Vandenbossche and Demuynck (2010), 
developed models with heterogeneous agents. However, none of these relate to incentives associated with 
information acquisition or diffusion; therefore, the predictions generated from those models are not star-shaped 
networks. Galeotti et al (2006) developed models showing that star networks are an equilibrium in environments 
where agents have heterogeneous benefits for information, while under heterogeneous costs stars are no longer 
equilibrium. 
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ante homogeneity. We investigate conditions under which ex ante identical agents will take 

asymmetric equilibrium actions to establish efficient and stable star networks. 

 

III. Theoretical Background  

Our study is based on the model of network game in Galeotti and Goyal (2010). In their 

model, a group of identical rational agents face the choice of either investing in information or 

obtaining it less expensively by linking to another who currently invested in information. The 

level of investment by agent i is discrete {0,1}ix  . The set of links sent by agent i is denoted by a 

vector 1 1 1( ,..., , ,..., )i i ii ii ing g g g g  , where 1ijg   if player i sent a link to player j. Linking 

choices are then combined to determine the directed network structure 1 2( , ,..., )ng g g g 15. The 

key assumptions of the model are that information is non-rival and flows both ways across 

network links.16  

The non-directed version of the network is denoted by g , where max{ , }ij ij jig g g  for 

each agent i and j. Define ( ; ) { : 1}ijN i g j g  as the set of agents to whom i has sent a link and 

( ; ) { : 1}ijN i g j g  as a set of agents with whom i has been connected. The payoff to agent i is 

( ; )
( , ) ( ) ( ; )                              (1)i i i i j i

j N i g

x g f x x cx N i g k


     

where 0c  reflects the cost of investing, 0k   is the cost of sending one link and ( ; )N i g  

refers to the cardinality of the set ( ; )N i g  .  

Different specifications for f define different types of games. In this paper, we follow 

Galeotti and Goyal (2010) and assume f is a step function 

( ) 1       if    1
                                                                    2

( ) 0      if    <  1
i i

i i

f y y
f y y

 
 

（ ） 

where 
( ; )

i i j
j N i g

y x x


   . The above return function ( )if y  resembles the payoff structure of best 

shot game in the widely studied public good games literature. The advantage to using a step 

                                                           
15 A directed graph is a graph where the edges have a direction associated with them. 
16 These assumptions are important due to the fact that they closely characterize certain situations of information 
dispersion in natural environments. For example, knowledge about agricultural technology is mostly non-rival, and 
could be shared between personal connections of farmers regardless of the linking direction. 
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function is that it provides sharp equilibrium predictions that can be more easily tested in the 

laboratory17.  

It can be shown that every equilibrium of the network best shot game is a star network 

when k c  (Galeotti and Goyal, 2010)18. The intuition is as follows: if in equilibrium the sole 

investor deviates and does not invest, then the group obtains no information, implying a lower 

payoff for everyone including the investor. Similarly, if a person who has linked to the investor 

deviates by not linking, choosing to link to another (who in equilibrium cannot have the 

information), or becoming an investor oneself, then in all cases such deviations clearly lead to 

lower payoffs. Therefore, the star network is a Nash equilibrium. Note also that all star network 

equilibria in the best shot game are efficient (in the sense that equilibria are not Pareto ranked). 

This feature of the network best shot game, as well as its clean equilibrium predictions, leaves it 

ideal for laboratory testing. In the following section we detail our design, which follows the 

network best shot game closely. 

 

IV. Experiment design and hypothesis  

 Our experiment is designed to examine how naturally-occurring institutions affect star 

network formation with ex ante homogenous agents. Institutional characteristics such as 

sequential decisions, investment limits and the RFR often coexist with star networks. We 

conjecture that these institutional characteristics may be important conditions for the formation 

of star networks in naturally occurring environments. Our laboratory study brings these 

institutional features into a controlled laboratory setting and examines the effect of each on star 

network formation. 

 

IV.1 Experiment Design 

IV.1.1. General Environment 

Our experiment design is based on the best shot game introduced in the appendix of 

Galeotti and Goyal (2010)19. This modification leads to the sharp prediction that a star network is 

                                                           
17  Instead of star network, the general model prediction a so-called core-peripheral network, where a few 
interconnected agents invest in information while the rest of agents connects to them.  A star network is a special 
core-peripheral network that includes a single agent in the core. 
18 When k c ,  the unique equilibrium is an empty network. 
19 This environment reflect in some ways a job contact network where people turn to other people to obtain 
information on job opening. 
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the unique Nash equilibrium configuration (of course there are four such networks that share this 

same configuration), and is also efficient20. To the best of our knowledge, our study is the first to 

examine the network formation process where agents make simultaneous linking and 

information investing decisions. 

Each experimental session includes 16 subjects randomly divided into four groups. All 

subjects participate in three stage games. Each stage game consists of a random number of 

rounds21. Groups are fixed during each stage game, and each group member holds a unique ID: 

J,K,L or M. We avoid using “A”  as  an  ID  because  it  may  be focal22. 

In each round, decision-makers decide to whom to link among their other three group 

members and also whether to purchase information. Table 1 details the costs and benefits 

associated with each action a player can take. If a participant purchases information, she pays a 

cost of E$0.9 and earns the value of information, E$3, with certainty. On the other hand, if a 

player decides to send a link to another player, she pays a cost of E$0.5 per link. When one 

subject links to another subject who has purchased information, the subject who chooses to link 

also earns E$3. Subjects who link to other subjects that have not purchased the information pay a 

cost of E$0.5, but earn nothing. Costs and payoffs remain fixed throughout all three stage games 

and all treatments.23. 

Table  1.  Costs  and  benefits  associated  with  player’s  actions 

 Parameter value 
Cost of sending link E$0.5 

Cost of investing in information E$0.9 
Value of information E$3 

Number of player in a group 4 
 

                                                           
20 In this earlier version of the paper, Galeotti and Goyal (2007) described a best-shot game where the investment 
decision is binary. An agent could choose either to invest in one unit or no units of the information . The optimal 
level of investment for a group is also set to be one, so that any additional investment is inefficient.  
21 There are always at least 4 rounds in a stage. After round 4, the game has a random stopping probability of 0.04 at 
any given round. To keep control over the length of the real experiment, we use the predetermined length 16, 44 and 
24 for experimental stages I, II and III respectively. Those numbers are generated using a random number device. 
The practice stage always lasts for 8 rounds. 
22 Some have suggested that the first mover J might also be in a focal position. It turns out that, for all treatments, J 
is not statistically more likely to be the center of the star than any of the other positions (p>0.195 in all bivariate  
comparisons across all treatments, two-sided Mann-Whitney tests) 
23 We choose these parameters to ensure that the predicted equilibrium and efficient networks are star-shaped. 
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Subjects submit their decisions using the decision screen (see Appendix A, Fig. 1). Then, 

a display screen informs all players of the current network outcome and each group member’s  

payoff (see Appendix A, Fig.2).  

Within each of the three stage games, the payoff is determined by the accumulated 

earnings over all rounds. Players are informed about their own stage payoff at the end of each 

stage. They are also reminded that they will be re-matched with players with whom they have 

not played previously, and that their stage payoff will not be carried over to the new stage. Each 

subject’s  earnings  for  the  experiment  are determined by one randomly-determined stage game 

(each with equal probability).  

 

IV.1.2 Treatment Design 

Within the general experimental environment described above, we study the effects of 

three institutional characteristics of network formation. We examine sequential decisions and 

investment limits on network formation, both individually and jointly, using a two-by-two 

treatment design. A fifth treatment then studies the effect of the “right  of  first  refusal.” 

In a two-by-two design, we vary the sequence of decisions in one dimension to be either 

sequential or simultaneous. In simultaneous treatments, subjects from the same group make their 

decisions at the same time, not knowing what other subjects would choose. In sequential 

treatments, only one subject makes a decision per round. Players make decisions according to the 

alphabetical order of their ID (first J, then K, L and finally M) with full knowledge of the choices 

made by earlier decision makers. Further, players earn money even on rounds for which they do 

not make a decision, with their payoff determined by their most recent previous choice in 

combination with the choices of others24.  

The second dimension of our design varies the existence of investment limits. Absent 

investment limits, players can invest in information and links at will, independently of other 

players’  decisions.  On  the  other  hand,  in  treatments  with investment limits, the following three 

conditions hold: (i) in each round, each player can either send a link or invest in information, but 

cannot do both; (ii) each player can send at most one link; and (iii) at most one player can invest 

in information at any given time. We refer to the treatment without limits as  the  “baseline”  in  
                                                           
24 Note that in relation to the simultaneous game, participants make fewer decisions in the sequential game. We 
made this decision in order to ensure that payoff incentives would be identical between the simultaneous and 
sequential games.   
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both the sequential and simultaneous environments, and denote treatments with investment limits 

as  “limits.” 

Notice that Seq_L and Seq_B differ in two ways: while investment is limited in Seq_L, it 

also implies the RFR, by which we mean that a person who currently invested in information has 

the right to continue his/her investment. The reason is that in Seq_L, a subject who has invested 

in information will continue to hold it until their next decision, and nobody else will be able to 

invest in additional information. Consequently, the only way they can lose the information is if 

they give up the information. It follows that comparing Seq_L to Seq_B measures the total effect 

of the investment limits combined with the RFR.  

While these two effects cannot be separated in our sequential environment, it is possible 

to achieve separation in a simultaneous setting. To do this, we construct a fifth treatment that 

builds on Sim_L but eliminates the RFR. In any given round, agents who choose to invest in 

information will have an equal chance to obtain the information, regardless of whether he/she 

invested the information in the previous round25. This treatment is denoted as simultaneous-

limits with no RFR (Sim_L_NoRFR).  

In summary, we investigate network formation in five treatments that differ in terms of 

the sequence of moves, whether investment is limited, and the existence or nonexistence of an 

RFR. We list the properties of these five treatments in Table 2. 

Table 2. Properties of Treatments 

Treatment Decision sequence Investment limits? RFR? 
Seq_B Sequential N N 
Seq_L Sequential Y Y 
Sim_B Simultaneous N N 
Sim_L Simultaneous Y Y 

Sim_L_NoRFR Simultaneous Y N 
 

IV.2. Explanation of Treatment Design 

We select our treatment conditions based on two criteria: (1) the institutions could 

plausibly provide stability to the network decision environment, and (2) they might bear 

relevance to the way star networks emerge in natural settings. 

 

                                                           
25 In Sim_L, if a previous investor chooses to invest, he/she will be able to continue the investment with 100% 
certainty. The first period investor is randomly determined if there are multiple players choosing to invest. 
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 Why sequential decisions?  

It is very common to create networks through a process of sequential decisions. For 

example, online networking sites, such as Facebook or Twitter, regularly ask current users to 

invite their friends to join the site, and then those friends ask their friends. Similarly, given that it 

is infeasible to achieve face-to-face interaction with large numbers of people at the same time 

and location, social connections  that  exist  “off-line”  also generally occur through a sequential 

process. For example, when farmers consult others before adopting certain new seeds, it is likely 

that they observe what other farmers have done and turn to the ones that have experimented and 

gathered experience with the seeds (Foster and Rozensweig, 1995; Conley and Udry, 2010). 

When decisions made by earlier movers are known to the later movers, sequential environments 

clearly reduce uncertainty about  others’  choices. This adds stability to the decision environment, 

which may promote equilibrium network formation.  

 

 Why investment limits?  

Investment limits are a regular feature of natural environments, and can take two forms. One 

is a limit on repeated investments in information. These limits emerge because technologies are 

expensive to create (Dimasi et al, 1991; Dimasi and Grabowski, 2007), often leaving it difficult 

for multiple groups to obtain the capital necessary to invest in the same idea. Further, policies 

may exist to prevent inefficient investment in information. For example, to reduce inefficiency 

caused by excessive rent seeking, many governments choose to limit investment by 

monopolizing “insider”  information (Tran, 2009).  

The second form of investment limit arises because creating multiple links may be infeasible. 

A reason is non-monetary constraints in terms of time or social distance. This can become 

especially significant in the context of personal relationships, where time spent together is an 

important factor and often a binding constraint (Marsden and Campbell, 1984). It is plausible 

that efficient star networks might emerge naturally in the presence of investment limits as a 

response to limited resources. 

Intuitively, reducing the action space may add stability to the decision environment. This is 

clear in the case of very severe limits (say, when only equilibrium decisions are possible). More 

generally, by reducing the choice set one may reduce  “noise”  associated  with  errors  and  other  

sorts of non-optimal decision making. Such effects may add consistency to decisions and, 
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consequently, stability to the economic environment. We pursue this possibility in our 

experiments by designing treatments with investment limits. 

The specific limits we consider reduce the set of actions each player can choose, thus 

reducing the number of possible network outcomes in our experiment26. Note that these limits 

are respected in any equilibrium, though they are not sufficient for equilibrium. Indeed, after 

imposing these restrictions, there remain 521 unique network outcomes, of which only four are 

equilibrium. 

 

 Why the “right  of  first  refusal”?  

The right-of-first-refusal (RFR) is a contractual arrangement that often exists between long 

term trading partners. Its value lies in stabilizing the buying or selling decisions in business 

relationships. Although regularly appearing in business contracts, RFR also has implications for 

any situation where long-term investment emerges naturally. An example is investment in 

personal education. Low-income families in developing countries may only be able to support 

formal education for one sibling (Song, Appleton and Knight, 2006). Applied to this situation, 

RFR suggests that the child who first begins education has the right to persist in his/her 

schooling. Other siblings would then expect to receive the return on the education by connecting 

with their educated sibling, i.e., the family forms a star network. Coordinating on educational 

outcomes in this way is efficient, and similar advantages may be at play when deciding which 

person or group is to receive advantaged access to information and knowledge, e.g., the choice of 

which employees will receive special training or which scholars will receive research grants.  

Our experiment design allows us to investigate the effect of RFR on improving stability 

and coordination in networks in a controlled environment. Note that in sequential play 

environments, RFR cannot be separated from investment limits. An advantage of simultaneous 

play environments is that the impact of RFR can be distinguished from that of investment limits. 

 

IV.3 Equilibria and Hypotheses  

IV.3.1. Equilibria prediction27 

                                                           
26 The  conditions  we  impose  reduce  the  number  of  players’  possible actions from 16 to 5, which then subsequently 
reduce the number of possible network outcomes from 65536 to 512. 
27 Our experiment includes repeated games with a random stopping rule, but we focus only on the analysis of the 
stage game equilibria as it is easy to show that a sequence of stage-game Nash equilibrium strategies is also a 
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For all three simultaneous treatments (Sim_B, Sim_L and Sim_L_NoRFR), the stage-game 

equilibrium is identical to the one described in Section III and in Galeotti and Goyal (2010). It is 

easy to see that adding investment limits to this environment does not change the equilibrium 

predictions, because these limits only rule out certain non-equilibrium actions. Similarly, the 

existence of the right of first refusal does not affect the stage game equilibrium predictions since 

it only makes it (weakly) more likely for people to hold beliefs consistent with equilibrium 

outcomes. 

For two sequential treatments (Seq_B and Seq_L), it is necessary to modify the stage game 

into its extensive form. It is easy to show that, under the parameter values as specified above, the 

unique subgame perfect Nash equilibrium for the extensive form game occurs when the first 

mover invests, and each subsequent player links to that investor. Further, because investment 

limits only rule out certain non-equilibrium play, it is straightforward to verify that this remains 

the unique SPNE in this case as well. Similarly, RFR would not alter the equilibrium prediction. 

All in all, all five treatments in our study share a common equilibrium: the star networks. 

 

IV.3.2 Hypothesis 

Our above discussion suggests, in general, that network environments that include sequential 

decisions, investment limits, and the “right  of  first  refusal,” are expected to facilitate star 

network formation. The effects can be demonstrated in multiple ways. We discuss three possible 

measures that capture the effects of these institutional characteristics: equilibrium frequency, 

network stability, and individual rationality. 

  

 Frequency of Equilibrium 

We count a network graph as a star if and only if there is one member who chooses to invest 

in information and the other three agents send exactly one link to the sole investor. For each 

stage of the game, equilibrium frequency is found by dividing the total number of star networks 

by the total number of rounds in that stage game. Then, the mean frequency of star networks is 

found by averaging over the frequencies in the 24 stage games of each treatment.   

 
                                                                                                                                                                                           
subgame-perfect equilibrium in the repeated game. NE strategies other than found in the stage game might exist in 
these repeated game environments (as demonstrated by Folk Theorems). It is beyond the scope of this paper to 
provide a characterization of these additional equilibria. 
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Hypothesis 1. Star networks emerge more frequently in environments characterized by 

sequential decisions, investment limits, and the RFR. In light of the above discussion, we expect 

the frequency of realized star networks to follow the order below (where A>B denotes that the 

star networks are expected to occur more frequently in A than B):  

1) Effect of sequential decisions:  

Seq_B>Sim_B; Seq_L>Sim_L 

2) Combined effect of investment limits and the RFR:  

Sim_L>Sim_B; Seq_L>Seq_B 

3) Effect of RFR alone (only in simultaneous environments):  

Sim_L>Sim_L_NoRFR 

4) Effect of the investment limits alone (only in simultaneous environments): 

Sim_L_NoRFR>Sim_B 

 

 Network Stability 

Network configuration may change over time. The stability of a network is key to many real 

world applications, e.g., R&D in business firms (Dodd et al, 2003). We use two measures to 

investigate the stability of networks among treatments: duration of equilibrium and duration of 

disequilibrium. For each stage, the duration of (dis-)equilibrium is calculated as the average 

number of consecutive (non-)star outcomes divided by the number of rounds in the stage. We 

then average this measure over all 24 stage games for each treatment. 

 

Hypothesis 2. This hypothesis again follows from our argument that star networks are promoted 

by sequential decisions, investment limits, and the RFR. This implies that environments with 

these features should exhibit a longer mean duration of continuous star networks and, after 

falling out of equilibrium, a shorter mean duration of disequilibrium.  

Specifically, we hypothesize the following regarding the mean duration of continuous star 

networks: 

1) Effect of sequential decisions:  

Seq_B>Sim_B; Seq_L>Sim_L 

2) Combined effect of investment limits and the RFR:  

Sim_L>Sim_B; Seq_L>Seq_B 
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3) Effect of the RFR alone (only in simultaneous environments):  

Sim_L>Sim_L_NoRFR 

4) Effect of the investment limits alone (only in simultaneous environments): 

Sim_L_NoRFR>Sim_B 

Similarly, we form hypotheses regarding the mean duration of disequilibrium after falling out 

of equilibrium. Note the direction of the effect is reversed from the first set of hypotheses, since 

the less time it takes to restore a star network, the better an institution is at promoting stability. 

5) Effect of sequential decisions:  

Seq_B<Sim_B; Seq_L<Sim_L 

6) Combined effect of investment limits and the RFR:  

Sim_L<Sim_B; Seq_L<Seq_B 

7) Effect of the RFR alone (only in simultaneous environments):  

Sim_L<Sim_L_NoRFR 

8) Effect of the investment limits alone (only in simultaneous environments): 

Sim_L_NoRFR<Sim_B 

 

 Individual Rationality 

Theory predict that for a rational player at any given time, if no player in the group 

invested in information, then the rational choice is to invest. While if at least one player in the 

group invested in information, then the rational choice is to send a link to the investor. Our 

individual rationality measure takes value 1 if a subject makes a choice consistent with 

rationality, and 0 otherwise.  

It is possible, in principle, to have a high mean individual rationality, while also having a 

low  frequency  of  equilibrium  (e.g.,  if  three  group  members  make  systematically  “good”  

decisions, but  one  member  makes  systematically  “bad”  decisions”).  In  general,  however,  we  

would expect high individual rationality in network formation games to imply faster convergence 

to star networks, as well as more stable network outcomes. Just as above, we expect sequential 

decision-making, investment limits and the “right  of  first  refusal” to each promote individual 

rationality.  
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Hypothesis 3. Individual rationality is greater in environments characterized by sequential 

decisions, investment limits and the RFR.  

1) Effect of sequential decisions:  

Seq_B>Sim_B; Seq_L>Sim_L 

2) Combined effect of investment limits and the RFR:  

Sim_L>Sim_B; Seq_L>Seq_B 

3) Effect of the RFR alone (only in simultaneous environments):  

Sim_L>Sim_L_NoRFR 

4) Effect of the investment limits alone (only in simultaneous environments): 

Sim_L_NoRFR>Sim_B 

 

IV.4. Experimental Procedure 

The experiment sessions were conducted between December 2010 and March 2011 in the 

ICES laboratory at George Mason University. Subjects were recruited via email from registered 

students at George Mason University. Each subject participated in only one session and none had 

previously participated in a similar experiment.  

In total, 160 subjects participated in the computerized experiment programmed with z-

Tree (Fischbacher 2007). Each experimental session lasted between 120 and 150 minutes. 

Subjects’  total  earnings  were  determined  by  the  Experimental  Dollars  (E$)  earned  at the end of 

the experiment, which were then converted at a rate of E$3 per US dollar. The average earnings 

were $25.28, ranging from a maximum of $53 to a minimum of $8 across all sessions.  

In all treatments, before a session started, subjects were seated in separate cubicles to 

ensure anonymity. They were informed of the rules of conduct and provided with detailed 

instructions (see appendix B for the instruction of Sim_B as an example).  The instructions were 

read aloud. In order to guard against confusion, after subjects finished reading the instructions, 

they were asked to complete a quiz. An experimenter checked their answers. Then the 

experiment worked through the quiz questions on a white board in front of the laboratory. The 

experiment began after all subjects confirmed they had no further questions.  

 We ran 2 sessions for each treatment condition. Thus, in the end, we obtained 672 

network graphs for each treatment (excluding the practice stage). Most of our analysis assumes 
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24 observations (eight groups each of which plays three stage-games with perfect strangers) for 

each treatment. 

 

V. Results 

We present results in the order of hypotheses listed in Section III.3. First, we discuss 

results concerning the frequency of star networks with an extended analysis on network 

centrality. Then we investigate two network stability measures: the duration of equilibrium and 

disequilibrium. Third, we look at the stability on decision making at individual level. Finally, we 

discuss  the measure of individually rational and how it varies across treatments and over time.    

 

V.1.1 Frequency of Star Networks 

The mean frequency of star networks in each of our treatments is shown in Figure 1. It is 

clear from this figure that star networks emerge at different rates, with baseline treatments 

displaying the lowest frequency of star networks. More formally, our findings are as follows:  

 

Figure 1. Mean frequency of star networks (in %) by treatment 
*Note: standard error shown in marks  
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Result 1. (Test of hypothesis 1.1) Sequential decisions do not increase the frequency of star 

networks. 

 We found star networks to emerge with frequency 12.6% and 12.7% in Sim_B and 

Seq_B, respectively (p=0.66729). On the other hand, when investment limits and the RFR are 

both present, 53.5% of networks formed in Seq_L are star shaped in comparison to 65.3% in 

Sim_L; this is also insignificant at standard levels (p=0.054).   

 

Result 2. (Test of hypothesis 1.2) More star networks emerge when investment limits 

combined with the RFR are present. 

Sim_L generated 65.3% of star networks, while only 12.6% of networks in Sim_B are 

star shaped. This difference is significant (p< 0.001). Agents in Seq_L form star networks 53.5% 

of time. When compared with the 12.6% in Seq_B, the difference is again significant (p< 0.001). 

Thus, our data provide clear evidence supporting the positive impact of investment limits and the 

RFR on star network formation. 

 

Result 3. (Test of hypothesis 1.3) The RFR promotes star network formation in 

simultaneous decision environments. 

The right most two bars in Figure 1 correspond to Sim_L and Sim_L_NoRFR. The only 

difference between these two treatments is that the RFR is present in the former but absent in the 

latter. In Sim_L star networks emerge at a rate of 65.3%30. The frequency in Sim_L_NoRFR 

treatment (32.4%) is significantly lower than this (p =0.0016). This is evidence that the RFR 

promotes star networks in simultaneous environment.  

 

Result 4. (Test of hypothesis 1.4) In simultaneous environments star networks emerge more 

frequently with than without investment limits. 

Sim_L_NoRFR generates star networks at a rate of 32.4%, while the frequency in Sim_B 

is 12.6% (p=0.0034). Thus, investment limits promote star networks under simultaneous 

decision-making.   

 
                                                           
29 Unless otherwise indicated, all p-value refers to two-tailed Mann-Whitney test. 
30 The frequency of star network we found here, 65.3%, is much higher than the best case in Goeree et al (2009) 
with agent heterogeneity condition. 
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Figure 2. Mean frequency of star network (%) over time 

 
 

Result 5. (Time Trend) More star networks are formed in later rounds of the experiment in 

Sim_L, Seq_L and Sim_L_NoRFR. 

Figure 2 depicts the mean frequency of star networks over time. In all treatments the 
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increase, when considering only the final five rounds, we can reject the hypothesis that mean 
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described in Table 3. The key finding is that Seq_L displays a statistically significantly higher 
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Table 3. Linear Regression on the evolution of star network frequency 

 Seq_B Seq_L Sim_B Sim_L Sim_L_NoRFR 

round 0.0053 
(0.000) 

0.0053 
(0.000) 

0.0158 
(0.000) 

0.0158 
(0.000) 

0.0057 
(0.000) 

0.0057 
(0.000) 

0.0072 
(0.000) 

0.0072 
(0.000) 

0.0083 
(0.000) 

0.0083 
(0.000) 

stage -0.128 
(0.005) 

-0.128 
(0.004) 

-0.419 
(0.000) 

-0.419 
(0.000) 

-0.133 
(0.006) 

-0.133 
(0.001) 

-0.096 
(0.114) 

-0.096 
(0.094) 

-0.0641 
(0.282) 

-0.0641 
(0.247) 

constant 0.1827 
(0.001) 

0.1826 
(0.000) 

0.7644 
(0.000) 

0.7644 
(0.000) 

0.1906 
(0.001) 

0.1906 
(0.000) 

0.5775 
(0.000) 

0.5775 
(0.000) 

0.1117 
(0.107) 

0.1117 
(0.083) 

fe(group) N Y N Y N Y N Y N Y 
R2 0.0310 0.0981 0.1200 0.1528 0.0353 0.3262 0.0661 0.1771 0.1196 0.2478 

 

Table 4. Chow test for the same slope of regression (p-value) 

 Seq_B Seq_L Sim_B Sim_L 
Seq_L 0.0007 - - - 
Sim_B 0.6515 0.0017 - - 
Sim_L 0.0011 0.7743 0.0028 - 
Sim_L_NoRFR 0.0000 0.0000 0.0000 0.0468 

 

V.1.2 Network Centrality 

Networks are said to have high centrality when a small number of people have a large 

number of connections. So, for example, network centrality is highest in our environment when 

one person receives three links, and no others receive any links, as occurs in a star network. It is 

lowest, on the other hand, when everyone sends links to each other person. Here we take a 

similar approach to Georee  et  al  (2008)  and  report  the  “degree  centrality” per group. The 

following equation gives the formal definition of this measure: 

 1degree-centrality max degree degree               (3)
( 1)( 2) j ij Ni Nn n 



        

where {1,2,... }N n  is the set of agents in the network, while i and j are two typical members of 

the set. 

        The above equation normalizes the centrality measure of a star network to be one. 

Intuitively, centrality measures closer to one suggest the network is more similar to a star. Our 

goal is to determine whether agents form networks that are more star-like over time and whether 

this tendency differs between treatments. 
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Result 6. Centrality is higher in treatments with investment limits and the RFR.  

        Figure 3 shows the mean degree centrality under each treatment condition. After Bonferroni 

correction for multiple comparisons, the difference between Sim_B and Sim_L , Seq_B and 

Seq_L remains statistically significant (p=0.000 and 0.078 respectively). Thus, under investment 

limits and the RFR, more star-like networks form in both sequential and simultaneous 

environments.   

 

Figure 3. Mean degree centrality measure by treatment 
*Note: standard error shown in marks  

 
 

IV.2 Stability of Star Networks  

We consider two measures of stability: (1) once a star network formed, how many rounds 

does it last? (2) after falling out of equilibrium, how many rounds does it take to restore a star 

network? Figure 4 demonstrates the average length of continuous star networks (in percentage 

term) across treatments.  
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themselves for an average of 2.24 rounds. The difference is not statistically significant 

(Mann_Whitney two tailed, p=0.6201). Similarly, when comparing results in Sim_L (29.8%) and 

Seq_L (44.5%), we cannot reject the null hypothesis that their equilibrium duration is identical 

(p=0.2742).  

 

Figure 4 The length of continuous equilibrium networks (%) by treatment 
 *Note: standard error shown in marks 

 
 

Result 8. (Tests of hypotheses 2.2, 2.3 and 2.4) Star network duration is longer in 

treatments with investment limits or RFR. 

Observed duration for continuous star networks parallels the results found regarding the 

frequency of equilibrium. 

In simultaneous environments, when investment limits are introduced (Sim_L_NoRFR), 

the average length of continuous star network increases to 5.8 rounds, a significant increase from 

the result of 2.1 rounds in Sim_B (p=0.0098).  Adding the RFR in Sim_L, the length of the 

equilibrium network increases to 12.46 rounds31, a significant difference compared both to 

Sim_L_NoRFR and Sim_B (p=0.0032 and p<0.001 respectively).  

                                                           
31 The longest-lasting star network occurs in Sim_L treatment, wherein a group of subjects kept playing a single star 
network for 43 rounds in their 44-round stage game without disruption. 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Seq_B Seq_L Sim_B Sim_L Sim_L_NoRFR 

Le
ng

th
 o

f C
on

tin
uo

us
  S

ta
r 

N
et

w
or

ks
 

Treatment 



27 
 

In the sequential environment, the same institutions of investment limits and the RFR are 

introduced. In Seq_L, star networks last for about 8.34 rounds in a 28-round stage game32. 

Agents in Seq_L do not sustain the same star as long as they did in Sim_L (p<0.001). 

Result 9. (Test of hypothesis 2.5) Sequential decisions do not shorten the duration of 

disequilibrium in the Baseline condition, but do under investment limits. 

Figure 5 shows that the duration of disequilibrium before reestablishing a star network 

does not differ between Sim_B and Seq_B (p=0.7142), while it does between Sim_L and Seq_L 

(p=0.0371).  

 

Figure 5. The length of continuous disequilibrium networks by treatment 
*Note: standard error shown in marks  

 
                                    

Result 10. (Test of hypothesis 2.6, 2.7, 2.8) Disequilibrium durations are shorter under 

investment limits or the RFR. 

Our data support hypotheses 2.6 and 2.7. Comparing Sim_L_NoRFR to Sim_L, the 

disequilibrium length falls from 10.1 rounds to 5.5 rounds, a significant decrease (p=0.014). In 

Sim_B and Sim_L it takes on average 17.2 and 5.5 rounds to return to equilibrium after a 

                                                           
32 The length of the stage games varies among stages, with an average of 28 rounds. The average length of 
continuous equilibrium is calculated as 1 2 3/16 / 44 / 24 28

3
n n n 

  where 
in is the average number of rounds in 

continuous equilibrium in stage i. 
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disruption. In Seq_B and Seq_L it takes 18.8 and 7 rounds on average to return to equilibrium 

play. Both comparisons are statistically significant (p<0.001). 

 

V.3 Stability of Individual Choices 

This section investigates the stability of individual decisions. A player makes four decisions per 

period (one purchasing and three linking decisions), and our strategy is to determine the mean 

percentage of changed decisions between period t-1 and t. The result is plotted in Figure 6 by 

treatment condition. We analyze data from the sequential and simultaneous treatments separately, 

because our sequential environment allows fewer changes in choice, and consequently our 

stability measure is not directly comparable between these two environments33. 

 

Figure 6. Mean percentage of choice change by treatment 
*Note: standard error shown in marks 

 
                       

Result 11. Among the three simultaneous treatments, institutions that generate more 

equilibrium networks also have exhibit greater choice stability. 

                                                           
33 Unlike the simultaneous treatments that allow decision changes each period, players in sequential environments 
are able to change their choices only once every four periods. An alternative stability calculation for the sequential 
environments includes only periods at which a player can change their decision. With this measure (which remains 
incomparable to the simultaneous treatments), the Seq_B players change about 52.58% of their choices each period 
and Seq_L players change about 40.36% of their choices per period. 
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Players in Sim_B change on average 27.99% of their choices each period, significantly higher 

than the frequency of change, 17.13%,  in Sim_L ( p=0.0035). Players in Sim_L_NoRFR make 

23.85% of their choices per period. This is higher than Sim_L (p=0.0254) and lower, although 

not statistically significantly, than Sim_B (p=0.1546). 

 

Result 12. Among the two sequential treatments, institutions that generate more 

equilibrium networks also exhibit greater choice stability. 

The average percentage of choice change in Seq_B and Seq_L is 16.11 and 13.19 respectively. 

The difference between them are statistically significant (p=0.001) 

 

V.4 Individual Rationality 

We define a decision to be rational if it satisfies both of the following conditions: (1) if 

any other agent has invested in information, one should link to her; (2) if no other agent has 

invested in information, one should invest. The percentages of decisions that satisfy these 

conditions are plotted in Figure 7 for each treatment condition.   

 

Figure 7. Mean percentage of rational choices made by treatment 
*Note: standard error shown in marks 
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Result 13. (Test of hypothesis 3.1) Sequential decisions do not improve individual 

rationality. 

We find no statistically significant differences in individual rationality between Sim_B 

and Seq_B (p=0.0512) or between Sim_L and Seq_L (p=0.2879).  

 

Result 14. (Test of hypothesis 3.2)The combination of investment limits and the RFR 

promotes rational choice at individual level. 

In simultaneous environments, about 40.8% of choices made are rational in the baseline 

condition, while in Sim_L, the number increases significantly to 79.3% (p<0.001). In sequential 

environments, the effect is smaller (an increase from 52.2% to 85.5%) but remains highly 

significant (p<0.001).  

 

Result 15. (Test of hypothesis 3.3)The RFR alone increases individual rationality in the 

simultaneous environment. 

The last two bars in Figure 7 show that the existence of the RFR improves individual 

rationality. About 51.9% of choices made in Sim_L_NoRFR are individually rational, a 

significant decrease in comparison to Sim_L (p=0.0023).  

 

Result 16. (Test of hypothesis 3.4) Investment limits promote rational choice at the 

individual level in simultaneous environments. 

The percentages of individual rational moves for Sim_L_NoRFR and Sim_B were 59.1% 

and 40.8% respectively (p=0.0010). 

 

 VI. Behavioral Rules 

The purpose of this section is to draw inferences about the behavioral rules of individuals 

in our various treatments. Our maintained assumption is that behavioral rules in all treatments 

are formed using elements from a menu of information that are finite and identical, but that 

different treatments lead to rules that differ at the level of usage on the information. Without ex 

ante knowledge of what kind of rules may exist, we use cluster analysis to detect them34. 

                                                           
34 Cluster analysis, as a numerical method for classification, serves the function of organizing a large and 
complicated data set into a small number of groups of objects so that the original data set could be easily understood 
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Compared to regressions, cluster analysis can better explore patterns within a complex 

environment where the classification structure may not be well defined. It allows us to explore 

behaviors among individuals without the need to pre-define the nature or number of possible 

rules (see also Houser et al, 2004).  

 In this section, we first discuss our method for cluster analysis (the k-means algorithm) and then 

describe how we implemented cluster analysis with our data. 

 

VI.1. The k-means clustering algorithm 

With cluster analysis, one develops indices and criteria to know in a mathematically 

precise way how  “close” or “far apart” objects are to each other. A variety of distance measures 

have been proposed. The one we use here is Euclidean distance: 
1/ 2
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where ikx  and jkx  are, respectively, the kth variable value of a p-dimensional observations for 

individual i and j.  

An informative clustering includes groups such that the distance between objects in the 

same group is small, while the distance between groups is large. Based on this simple intuition, a 

variety of so-called  “dissimilarity  indices”  (formed by combining distance measures across 

agents) have been suggested.  

The particular index described below comprises the foundation for the k-means clustering 

algorithm, which we use to perform our analysis. Let ,ql kvd  be the Euclidean distance between the 

lth object in the qth group and the vth object in the kth group. Then the k-means dissimilarity index 

takes the following form: 
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based on patterns of similarity. It is widely used in fields such as astronomy, biology and marketing, and 
increasingly in economics (Fisher, 1963; Hirschberg et al, 1991; Houser, et al, 2004). 
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This index measures the within sum of square, i.e., the sum of squared distances between 

an object in cluster group m and the mean of all objects that belong to group m35. 

  Ideally, one would be able to go through all combinations of objects to determine the one 

that yields the lowest dissimilarity index within each group. However, when the number of 

objects is not small, it becomes extremely computationally burdensome to do so36. This has led 

scholars to develop numerical algorithms to approximate clustering solutions; among these, k-

means is used most widely (Steinley, 2006). 

Our analysis is based on a canonical k-means algorithm (Hartigan and Wong, 1979). It 

involves iteratively updating partitions by relocating objects into the group whose mean is 

closest and then recalculating group means.  

 

 Determining the number of clusters 

A cluster analysis requires one to determine the number of clusters a dataset contains. A 

large variety of methods have been proposed for this purpose. In a Monte Carlo analysis, 

Milligan and Cooper (1985) report that among 30 methods they compared, the top performer was 

Calinski and Harabasz (1974) (which we denote by C-H)37. We use C-H to determine the number 

of clusters in our data. 

C-H suggested that the number of clusters, g*, should be chosen to maximize C(g), where 

C(g) is given by: 

( ) ( )( )                                                     (6)
1

trace B trace WC g
g n g


 

 

where B is the usual between (clusters) sum of squared deviations from (overall) mean, and W 

the within (clusters) sum of squared deviations from (cluster) mean. 

 

VI.2. Results from k-means analysis 

Our analysis proceeds in two steps. First, we estimate for each individual the parameters that 

characterize the way they make decisions given information. Then, we use cluster analysis to 

                                                           
35 Indices that measure the separation between groups are also used in many other methods. We refer interested 
readers to Everrit et al (2011). 
36 According to Liu (1968), the number of possible partitions one must consider in order to partition 100 network 
agents into five groups is 6.6*(10^67). 
37 Another successful technique developed by Duda and Hart (1973) works with hierarchical cluster methods. The 
network data do not fit these types of cluster analysis. 
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group similar individuals into behavioral rules. In particular, we run a linear regression for each 

individual with the decision to invest (or not) as a binary dependent variable, on a constant, a 

dummy for whether investing is rational and an index characterizing the subjects investing 

behavior in the previous two rounds38  (see also Kurzban and Houser, 2005). Then, we use the k-

means algorithm to cluster these estimates into groups of behavioral rules. We repeat the above 

analysis for the linking decision. 

 

VI.2.1 Behavioral rule parameters 

The  independent  variables  we  include  in  our  regressions  are  meant  to  capture  a  person’s: (i) 

base rate willingness to invest or link to others (captured  by  the  regression’s  constant);;  (ii)  

consistency with individual rationality (captured by the a dummy variable that takes value one if 

it is optimal to invest (or link)); and (iii) propensity to form a “habit” of choice in the sense that 

they do what they did before (captured by the variable indicating the lagged decisions for the 

past 2 rounds). Equations 7 and 8 specify our regression equations for investing and linking 

respectively: 
2
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1,  if subject i should have purchased information at round t 
    according to individual rationality
0,  otherwise

p
i trational
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1,  if subject i should have sent link at round t 
    according to individual rationality
0,  otherwise

l
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1, if subject i invested in information in round t-s
0,  otherwisei t sinvest 


 
  

,  number of links subject i sent in round t-si t slinksending  
 

                                                           
38 We use the sum of past two choices as a proxy for past choice in this analysis since the immediate past choices are 
highly likely to be collinear with our dependent variables in all treatments with investment limits. 
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The above regressions are repeated for each individual. We end up with 142 and 152 

subjects in our sample for the investing and linking regressions, respectively39. Each individual’s 

estimates can be represented by a point in 3-space (See Appendix C, panels a and b).  

 

I.2.2 K-means clustering  

We implement our k-means cluster analysis, as well as cluster number selection, using R40. 

Based on the C-H index, we find three clusters in both investing and linking decisions41 (See 

Appendix C, panel a and b, for the 3-space plot).  

a) Investing decisions 

The three panels of Figure 8 are the three 2-space projections of the estimates 1 2 3{ , , }    

from regression on investing decisions (Equation 7) into corresponding 2-space . Each point 

represents an  individual’s  estimates  from  his/her  investing decisions regression. Points with the 

same marker belong to the same cluster.  

Figure 8. Projections of Estimates from Investing Decision  

(a) 

 

                                                           
39 We drop 18 subjects for regressions on investing decisions, as there is zero variation in dependent variables. For 
the same reason, we drop 8 subjects for regression on linking decisions. 
40 We have found substantial differences in K-means clustering results produced by the standard packages in Stata, 
R and Matlab. We traced it to differences in the specific numerical algorithms used by each package (Steinley, 2008) 
and decided to adopt clustering package from R, as it is most robust to the choice of initial points. In particular, we 
use kmeansruns from package cluster and initialize the same clustering analysis with 1000 different starting points.  
41 Decision rules for investing and linking differs in terms of interpretation and the range of measurement. Hence, 
we discuss them separately. 
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(b)

 
 

(c) 

 
 

It is clear from visual inspection that our clusters are well-separated. To provide statistical 

evidence on the strength of this separation, we analyze the separation along each independent 

variable’s  axis. Mann-Whitney tests find significant differences between all pairs of clusters in 

each axis (p<0.001), with the exception of the constants in the triangle and round clusters (the 

lack of separation in this single case can be clearly seen from panels (a) or (b)).  

Not only are the clusters clearly separated, the location of the clusters also carries 

meaningful interpretation in our sample. Table 5 provides the mean estimate for each 
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independent variable and for each cluster, and also reports whether that mean is significantly 

different from zero.  

Table 5. The Mean of Estimates from Regression on Investing Decision 

 Square cluster Triangle cluster Round cluster 
Rational to invest 0.8190 

(0.0000) 
0.3411 
(0.0000) 

-0.0978 
(0.0054) 

Lagged choice -0.0408 
(0.1480) 

0.1745 
(0.0000) 

0.0782 
(0.0120) 

Base rate(constant) 0.0175 
(0.2589) 

0.0137 
(0.7066) 

0.4279 
(0.0000) 

Number of subjects 57 46 39 
Note: p-value from Wilcoxon signed-rank test in parentheses 

 

Based on the results from Table 5, we summarize the characteristics of the three clusters that 

define the three behavioral rules used by our subjects.  

(1)  We define the cluster indicated with circular markers as the “Rational”  type. People that 

belong to this cluster are guided by the rationality of the current opportunity to invest. They 

focus relatively less on their past choices, and their base rate of investing is near zero. 

Consequently, if it is neither rational to invest nor had they invested before, the subjects in 

this group would be relatively unlikely to invest. 

 

(2) We define the cluster indicated by triangle markers as the “Habit” type. Subjects in this 

cluster are guided by rationality, but relatively less so than the Rational type. Instead, their 

current  decisions  follow  closely  their  past  decisions.  As  with  the  “Rational”  type,  the base rate 

of investing of the Habit type is near zero. 

 

(3) We define the cluster indicated by square markers as the “Dogmatic”  type. When making 

their investing decisions, subjects of this type place relatively little weight on whether it is 

rational to invest, and also are less guided by whether they have invested before. We find that 

the Dogmatic subjects have the highest base rate of investing among all three types. 

 

We now investigate how the institutional characteristics in our various treatments affect 

the type of behavioral rules subjects use. Table 6 reports the frequency of types by treatment.  
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Table 6. Number of Individuals in each Treatment and each Type 

According to Investing Decisions 

 Seq_B 
12.6% of star 

Seq_L 
53.5% of star 

Sim_B 
12.7% of star 

Sim_L 
65.3% of star 

Sim_L_NoRFR 
32.4% of star 

“Rational” 
Round 

9 
(31.03) 

23 
(92.00) 

0 
(0.00) 

3 
(11.11) 

22 
(70.97) 

“Habit” 
Triangle 

8 
(27.59) 

2 
(8.00) 

3 
(10.00) 

24 
(88.89) 

9 
(29.03) 

“Dogmatic” 
Square 

12 
(41.38) 

0 
(0.00) 

27 
(90.00) 

0 
(0.00) 

0 
(0.00) 

Total 
 

29 
(100.00) 

25 
(100.00) 

30 
(100.00) 

27 
(100.00) 

31 
(100.00) 

Note: percentage in parenthesis 

 

As noted above, star networks emerge in fewer than 13% of our two baseline treatments 

(Seq_B and Sim_B). This low level of star network formation coincides with a concentration of 

Dogmatic type subjects (41.38% and 90% respectively). That is to say, having a concentration of 

players using the Dogmatic investing rule is not conducive to star network formation. 

On the contrary, for the Seq_L treatment, which generates a relatively high percentage of 

star networks, the large majority of subjects (92%) choose to behave rationally. The other highly 

effective treatment, Sim_L, generates 65.3% of star networks. Its success at generating star 

network coincides with a high level of Habit typed subjects (88.89%), a few Rational subjects 

(11.11%) and no Dogmatic subjects.  

The Sim_L_NoRFR treatment generates a medium level of star networks (32.4%). No 

subject in this treatment belongs to the Dogmatic type. In particular, most of them (70.97%) 

follow rational behavioral rules.  

 

b)  Linking decisions 

Similar to the above analysis, the three panels of Figure 9 project each 3-vector estimate 

1 2 3{ , , }    from regression on linking decisions (Equation 8) into corresponding 2-space.  

Again, we find clear visual separation between our clusters from estimates on linking 

behavior, and Mann-Whitney tests support significant differences between all pairs of clusters on 

all three axes (p<0.001), again with the exception of the estimates of the constants between the 
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round and triangle clusters (p=0.5279) (this is apparent from visual inspection of Panels a and b 

in Figure 9).  

Interestingly, the location of the clusters closely resembles those found for investing 

decisions. Consequently, we assign the same labels, Rational, Habit and Dogmatic, for each of 

these clusters as well. Table 7 reports the mean of each estimate for each cluster and the 

Wilcoxon signed-rank p-value  for  the  test  of  whether  the  cluster’s  mean  is  significantly  different  

from zero.  

 

Figure 9. Projections of Estimates from Linking Decision  

(a) 

 
(b) 
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(c) 

 
 

Table 7. The Mean of Estimates from Regression Analysis of Linking Behavior 

 Round cluster Triangle cluster Square cluster 
Rationality 0.7746 

(0.0000) 
0.2693 
(0.0000) 

-0.0461 
(0.2112) 

Lagged choice -0.0187 
(0.4091) 

0.2179 
(0.0000) 

0.0745 
(0.0041) 

Base rate(constant) 0.1735 
(0.0000) 

0.1331 
(0.0000) 

0.6980 
(0.0000) 

Number of subjects 37 75 40 
Note: p-value from Mann-Whitney test in parenthesis 

 

Based on the characteristics of the three clusters described in Table 7, we define three 

behavioral rule types as follows: 

 

(1) We define the round cluster to be a “Rational”  type.  People who belong to this cluster make 

decisions that are guided largely by the rationality of their current choice. They have a 

significantly positive (but small) base rate of linking, but they do not take account of their past 

choices when making their decisions. 

 

(2) We define the triangle cluster as a “Habit” type. People in this cluster make choices that 

resemble their previous choices. It turns out that rationality is also statistically significant, but 

the coefficient is smaller than that of the Rational type. 
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(3) We define the square cluster as a “Dogmatic”  type.  Subjects  in  this  group  sent  links to others 

at a high base rate; rationality is not a statistically significant predictor of choices for this type 

and while previous choices have a statistically significant coefficient that is small in 

magnitude. The base rate of linking is 69.8% ( statistically significantly higher than either of 

the other types (p<0.001)). 

 

To see how institutions interact with types, we report types by treatment in Table 8.  

 

Table 8. Number of Individuals in Different Treatments and Types 

According to Linking Decisions        

 Seq_B 
12.6% of star 

Seq_L 
53.5% of star 

Sim_B 
12.7% of star 

Sim_L 
65.3% of star 

Sim_L_NoRFR 
32.4% of star 

“Rational” 
round 

13 
(40.63) 

20 
(71.43) 

0 
(0.00) 

2 
(6.67) 

2 
(6.25) 

“Habit” 
Triangle 

6 
(18.75) 

4 
(14.29) 

12 
(40.00) 

24 
(80.00) 

29 
(90.63) 

“Dogmatic” 
square 

13 
(40.63) 

4 
(14.29) 

18 
(60.00) 

4 
(13.33) 

1 
(3.13) 

Total 32 
(100.00) 

28 
(100.00) 

30 
(100.00) 

30 
(100.00) 

32 
(100.00) 

Note: percentage in parenthesis 

 

We were surprised that the clusters found in the linking analysis resemble so closely the 

clusters found in our analysis of investing behaviors. In both cases, the two baseline treatments 

with the lowest frequency of star networks also have the highest percentage of subjects 

belonging to Dogmatic type (40.63% and 60% for Seq_B and Sim_B respectively). 

Result from Seq_L shows that the majority of subjects are the Rational type. And while 

Sim_L has the most frequent star network formation, it also has a high percentage of Habit type 

subjects.  

To investigate the relationship between the behavioral rules players use when making 

linking or investing decisions, Figure 10 plots the percentage of players belonging to each type in 

linking decisions conditional on each type in investing decisions42. 78% of subjects that are the 

                                                           
42 Note that by construction, players in the investment-limits treatments who make rational investing decisions also 
necessarily make rational linking decisions. This is true only for the players who behave perfectly rationally in the 
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Habit type in investing decisions are also Habit type in linking decisions. Similarly, there is 

substantial overlap among participants classified as Rational and Dogmatic between linking and 

investing decisions. Indeed, a Pearson Chi-square test rejects that type classifications are 

independent between investing and linking decisions (p<0.001). 

 

Figure 10. Frequency of Each Type in Investing Decision  

Conditional on Types in Linking Decision 

 
VI.3. Discussion 

Our results suggest that efficient star networks are promoted by the “right” institutions, in 

particular, the investment limits and the right of first refusal. Both of these institutions were 

shown   to   add  “stability”,   in a precise sense discussed in section IV.2, to the network decision 

environment. 

As discussed in section IV.3.1, our network games with and without investment limits are 

theoretically equivalent, despite the fact that these limits reduce numbers of actions players can 

take. A possible advantage to this is that when fewer options are presented, people tend to make 

                                                                                                                                                                                           
investment-limits treatments. Our design does not otherwise imply any correlation between the behavioral rules 
followed by players when making linking or investing decisions. 
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a better choice (Schwartz, 2004)43. While we do not have data to address the source of this effect, 

what is clear is that investment limits add substantial stability to the decision environment. This 

enables more sophisticated strategies to emerge under investment limits, in particular rationality 

and habit formation.  

Similarly, we found intriguing the large and positive effect on star network emergence 

connected to the right of first refusal, because this institution does not alter stage game 

equilibrium predictions. Its main effect is to stabilize changes in players’  beliefs over rounds. It 

is plausible that the substantial effect of RFR is due primarily to the way it promotes a stable 

environment.  

While investment limits and the right of first refusal both facilitate star network 

formation, sequential decisions were much less successful. We were surprised by this latter result. 

Indeed, many studies have documented that sequential moves improve coordination and promote 

efficiency (Cooper et al, 1993; Rapoport, 1997; Guth et al, 1998; Weber et al, 2004). Depending 

on how it is measured, we find stability either to increase or decrease under sequential 

institutions, in relation to simultaneous move environments. Moreover, it does not seem that the 

opportunity to move sequentially improves the behavioral rules used by our participants.  

It is worthwhile to note that Falk and Kosfeld (2003) and Georee et al (2006) discovered 

the importance of inequality aversion in preventing star networks from forming under standard 

theoretical conditions. This suggests that finding approaches to subsidizing investors might 

promote star network formation. Inequality is a feature of our environment, in that investors earn 

less per round than linkers, yet stars form in our environment absent subsidies44. A reason, we 

argue, is that when institutions enhance decision stability players are better able to rotate their 

network position and thus maintain a high level of overall network efficiency while concurrently 

equalize earnings. 

It seems clear that focal points can improve coordination and promote the emergence of 

star networks. Goeree et al (2009) may have in part provided such a focal point by assigning 

common knowledge heterogeneous payoff functions. Our study shows that exogenous focal 

points are not necessary to grow star networks. This finding could be of value especially when 
                                                           
43 This effect may be due to reduced cognitive load or due to the urge to optimize under the stress of a budget 
constraint. 
44  The standard deviations of payoff in Seq_L, Sim_L and Sim_L_NoRFR are 7.05, 7.12 and 7.02, respectively. 
They are significantly lower at 1% level pairwisely compare to the ones in Seq_B and Sim_B (10.48 and 9.05 
respectively). 
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policy makers intend to use focal points as coordination devices, but are either unwilling or 

unable to assign a focal point to a specific person. Our results suggest the possibility of designing 

institutions under which focal points endogenously emerge. This may be a promising approach to 

solving coordination problems in a wide variety of market and non-market environments. 

  

VII. Conclusion 

Star networks emerge naturally in many social environments, and theory indicates star 

network equilibria are efficient. Based on a model suggested by Galeotti and Goyal (2010), we 

study star network formation using laboratory experiments. Previous studies indicate that 

persistent star networks emerge in the lab, but only under ex ante agent heterogeneity (Goeree et 

al, 2009). This contrasts with natural environments, where star networks frequently emerge even 

when agents are ex ante homogeneous (Feick and Price, 1987; Conley and Udry, 2010). We 

conjectured that certain stability enhancing institutions, such as sequential decisions, investment 

limits, and the “right  of  first refusal,” may help to explain why star networks form in relevant 

natural environments.  

Our main finding is that investment limits and the “right  of  first  refusal” promote star 

network formation. In comparison to baseline treatments, we find that environments with those 

features realize increased star-network frequency, improved network stability and higher rates of 

individually rational choices.  

In order to shed light on the impact of institutions at the individual level, we use a cluster 

analysis to draw inferences about behavioral rules used by participants in different environments. 

We find players clearly separate into using “Rational”, “Habit” and “Dogmatic” rules. Moreover, 

“Rational”  and  “Habit”  rules  are  used  in  the  presence of institutions that promote star networks. 

Further, we typed each participant separately according to their linking and investment decisions. 

We were comforted in finding that type-classifications between these two decision domains were 

tightly correlated, arguing for the validity of this behavioral characterization.  

To our knowledge, our paper reports the first experimental investigation of the impact of 

institutions on star network formation. Results from this study suggest how one might design 

mechanisms to promote the efficient flow of information through social networks. Our results 
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should be of interest to those involved in activities including political campaigns, franchise 

training or agricultural innovation45.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                           
45 For example, our study suggests that when an important agricultural innovation occurs, designing a network 
formation process that incorporates investment limits or the RFR may lead to more knowledge transmission, 
therefore higher adoption rate, with lower cost. 
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Appendix A. Z-tree experimental interface 

 

Fig.A An example of the decision screen 

 

 
 

 

 

 

 

 

 

 



53 
 

Appendix A, continue 

 

Fig B. An example of the display screen 
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Appendix B. Multiple Comparison Correction:  

We find most of the results in section IV.1  hold when we correct the p-value for multiple 

comparisons. Table A-D report pair-wise comparisons between treatments with a Bonferroni 

correction for equilibrium frequency, equilibrium duration, disequilibrium duration and 

individual rationality. Table entries show row mean-column mean (p-value in parenthesis). 

Table A. Differences in the mean frequency of star networks by treatments 
 Seq_B Seq_L Sim_B Sim_L 
Seq_L 0.4078 

(0.000) 
   

Sim_B -0.0011 
(1.000) 

-0.4089 
(0.000) 

  

Sim_L 0.5260 
(0.000) 

0.1182 
(1.000) 

0.5271 
(0.000) 

 

Sim_L_noRFR 0.1963 
(0.080) 

-0.2115 
(0.044) 

0.1974 
(0.076) 

-0.3297 
(0.000) 

Table B. Difference of the mean equilibrium duration by treatments 
 Seq_B Seq_L Sim_B Sim_L 
Seq_L 0.223 

(0.022) 
   

Sim_B 0.052 
(1.000) 

-0.217 
(0.028) 

  

Sim_L 0.369 
(0.000) 

0.147 
(0.409) 

0.364 
(0.000) 

 

Sim_L_NoRFR 0.132 
(0.664) 

-0.091 
(1.000) 

0.126 
(0.778) 

-0.238 
(0.011) 

Table C. Difference of the mean disequilibrium duration by treatments 
 Seq_B Seq_L Sim_B Sim_L 
Seq_L -0.361 

(0.001) 
   

Sim_B 0.058 
(1.000) 

0.419 
(0.000) 

  

Sim_L -0.416 
(0.000) 

-0.055 
(1.000) 

-0.474 
(0.000) 

 

Sim_L_NoRFR -0.253 
(0.048) 

0.108 
(1.000) 

-0.310 
(0.006) 

0.164 
(0.650) 

Table D. Difference of the mean disequilibrium duration by treatments 
 Seq_B Seq_L Sim_B Sim_L 
Seq_L 0.333 

(0.000) 
   

Sim_B -0.114 
(0.314) 

-0.447 
(0.000) 

  

Sim_L 0.270 
(0.000) 

-0.062 
(1.000) 

0.385 
(0.000) 

 

Sim_L_NoRFR 0.069 
(1.000) 

-0.264 
(0.000) 

0.183 
(0.007) 

-0.202 
(0.002) 
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Appendix C. 3-space Plot for Individuals’  Estimates  by  Treatment 

 

 

(a) Investing decisions 

 
 

 

(b) Linking decisions 

 
 

Note: different markers represent different treatments 
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Appendix D. 3-space Plot for Individuals’  Estimates  by  Cluster 
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(b) Linking decisions 

 
 

 

 
 


