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Abstract: Innovation occurs in network environments. Identifying the important players in the 

innovative  process,  namely  “the  innovators”,  is  key to understanding the process of innovation. 

Doing this requires flexible analysis tools tailored to work well with complex datasets generated 

within such environments. One such tool, cluster analysis, organizes a large data set into discrete 

groups based on patterns of similarity. It can be used to discover data patterns in networks 

without requiring strong ex ante assumptions about the properties of either the data generating 

process or the environment. This paper reviews key procedures and algorithms related to cluster 

analysis. Further, it demonstrates how to choose among these methods to identify the 

characteristics of players in a network experiment where innovation emerges endogenously. 
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I. Introduction 

 

Innovation often occurs in networked environments. A player in these networks may play the 

role of either “innovator”  or  “follower”.  To  identify  the  characteristics of players is a crucial first 

step towards understanding the process of innovation and economic growth. More generally, 

researchers in social science often need to classify individual behavior data into meaningful 

groups so that we can better describe the differences and similarities among individuals.  

When natural features, such as gender, age or income, are obviously driving the change of the 

variable of interest (in our case the level of innovation) then one can form hypotheses regarding 

the nature of differences between groups and, subsequently, use statistical methods such as 

regression analysis to validate or reject these hypotheses. Unfortunately, such a priori 

interpretations of data are not always available. An advantage to cluster analysis is that it does 

not require strong ex ante assumptions about the data generating process. As a numerical method 

for classification, cluster analysis allocates large and complicated datasets into discrete groups.  

As early as the 1920s, psychologists were interested in the composition of ability. Some claimed 

all ability could be explained using two factors (Spearman, 1904), others argued that there were 

more divisions, such as verbal, arithmetic, memory and spatial. Left unanswered were the 

number of low-level abilities and the way they relate to each other. This question inspired Robert 

Tryon to develop the first cluster analysis algorithm, then leading to the development of the first 

cluster analysis software BC TRY in the 1960s (Tryon, 1932; Tryon,1935; Tryon and Beiley, 

1966).  

Since then, numerous mathematical algorithms have been proposed to improve the performance 

of clustering (Everitt et al 2011). Due to its simplicity and wide applicability, cluster analysis has 

been commonly used for data analysis in fields ranging from astronomy (Rosenburg, 1910; Babu 

and Feigelson, 1996 for a review), biology (Kerr and Chirchill, 2001;Witten and Tibshirani, 

2010), psychology (Johnson, 1967; Farmer et al, 1983; Borgen and Barnett, 1987; Hay et 

al,1996) and anthropology (Clarke, 1968; Sutton and Reinhard, 1995), marketing (see Punj and 

Stewart, 1983 for a review), to increasingly in economics (Fisher, 1969; Hirschberg et al, 1991; 

El-Gamal and Grether, 1995; Slater and Zwirlein, 1996; Houser, et al, 2004; Yamamori et al, 

2008; Adomavicius et al, 2012). 



Walter Fisher was the first economist to systematically study the problem of classification. In his 

1969 book Clustering and Aggregation in Economics, he foretold the increasing complexity of 

quantification in social variables and  stressed  “the  need  for  systematic  and  scientific  

simplification”  of  social  science  data through clustering1. The discussion regarding the methods 

of clustering disappeared in economics for a long time  after  Fisher’s  book  was  published.  In  

1960s and 1970s, the fields that saw new developments and applications using clustering 

methods were largely psychology and anthropology.  

El-Gamal and Grether (1995) revived economists’  interest  in  uncovering behavioral strategies 

from complex data. They developed a pseudo-Bayesian approach to classify behavioral strategies 

used by individuals in games. The method is loosely related to finite mixture density clustering. 

Houser et al (2004) developed a related method in which the nature and the number of decision 

rules are determined simultaneously.  

Substantial time elapsed from Fisher’s  original work to the time empirical economists began to 

apply cluster analysis to real-world datasets. Among the few studies that implement cluster 

analysis, a variety of topics are included. Hieschberg et al (1991) identify clusters for welfare 

measures across countries using multiple hierarchical agglomerative clustering methods. Slater 

and Zwirlein (1996) adopt a slightly different hierarchical method using Ward’s  minimum  

variance as clustering criteria2. They allocated 303 S&P 400 companies into 8 distinct groups in 

which some were classified as “stable  maintainers”  and  others “leveraged  strategists”.  

Recently, a few experimental economists started to use cluster analysis to identify behavioral 

patterns among subjects. DeRubeis et al (2007) investigates the difference on the transmission 

pattern of sexually transmitted disease. The authors clustered individuals based on their 

demographic and clinical characteristics and separated the social network analysis for each 

cluster. Yamamori et al (2008) found three types of dictators in a modified dictator game with 

communication  using  Ward’s  minimum variance hierarchical clustering. Adomavicius et al 

(2012) found that bidders in their auction experiment could be categorized into three behavioral 

groups using k-means clustering. 

                                                           
1 The methods reviewed in Fisher (1969) is somewhat different from the cluster analysis defined by its current 
literature. The author did relate these clustering and aggregation methods to the general literature of cluster 
analysis. 
2 The difference and relations between cluster method and cluster criteria will be detailed in Section 2. 



Given the level of complexity of innovative behavior in networks and the absence of pre-

specified  hypothesis  on  players’  characteristics  in  these networks, it is natural to extend the use 

of cluster analysis to this context. The goal of this paper is to (1) review cluster analysis methods 

that are straightforward and easily implementable and (2) provide a concrete example of 

implementing this technique  in  a  network  dataset  where  we  identify  the  “innovators”  without 

pre-specifying their characteristics. Two key questions must be answered before implementing 

any clustering procedure3: which method should be used for the clustering analysis; and which 

method should be used to discover the number of clusters in the data. As these two decisions are 

made separately, we review them in separate section of the paper.  

In Section II, we begin with a discussion of various clustering criteria and how they are used to 

find  clusters  in  one’s  data. Since finding exact solutions in cluster analysis can be extremely 

computationally burdensome, semi-optimal clustering algorithms, such as k-means and k-median 

algorithms, are discussed. Section III reviews procedures for cluster analysis and discusses 

different methods used for each procedure. In addition to the choice of clustering methods, one 

also needs to choose how to determine the  “correct”  number  of  clusters. Section IV reviews two 

common approaches for this, the Silhouette width and the Calinski-Harabatz index. Section V 

introduces an example relevant to the study of innovation in networks and provides a sample 

analysis using data from a laboratory experiment related to innovation. The final section 

concludes. 

  

II. Measures Used in Clustering 

With optimization cluster analysis one develops indices and criteria to know in a mathematically 

precise  way  how  “close”  or  far  apart  objects  are  to  each  other.  There are many schools of thought 

regarding clustering.  

One method adopts a bottom-up approach where the closest two objects are grouped first and 

then a third objects that are closest to the two4 are added, so on and so forth. This method 

gradually forms a tree-like  cluster  result  which  gives  its  name  “Hierarchical  clustering”.  The  
                                                           
3 An exception arises when one uses finite mixed density approaches for cluster analysis. In this case both 
questions are answered at the same time.  
4 Depending on the sub-school of thought, the similarity of an object to a group of objects could be evaluated by 
the distance of the object from the mean, the centroid, or the farthest or the closest object of the group. 



hierarchical cluster analysis has a natural implication in taxonomy where objects bear similarity 

at different levels and join groups that are not necessarily horizontally comparable. An example 

is the classification of plants where genus, family and variety are groups formed at different 

levels of similarity. However, when studying clusters in social science data, researchers are often 

interested in parallel group structures that contain the entire dataset. This specific goal is 

achieved with another clustering method, optimization clustering.  

The goal of optimization clustering is to allocate optimally all objects into a few groups5 so that 

the aggregate distance within a group is small and the distance between groups is large. As this 

method provides a way to place individuals into flexible decision rule categories, and is 

straightforward and easily applicable to almost all behavioral datasets, we believe that the 

method bears relevance to the current discussion.  

We introduce optimization clustering by describing each step of the clustering procedure. It starts 

with distance measures which calculate how close and far apart an object (or a group) is from 

another object (or another group). Built on the distance measures, we then discuss a variety of 

(dis-)similarity indices developed to aggregate these distance measures for any particular group. 

Different similarity indices are then combined to become the goal of the maximization (or 

minimization) problem. We introduce these goals (also known as optimization criteria) one by 

one. Finally, we demonstrate how clustering algorithms, like k-means and k-median, provide 

quasi-optimal solutions for the computationally impossible clustering problems. 

 

II.1 Distance Measures 

The starting point of many clustering investigations is an n p  multivariate matrix X with n 

observations each of which are described with p distinct characteristics. For behavioral datasets, 

this can be interpreted as a matrix of n individuals with each individual having p descriptive 

variables, such as gender, age, choices, etc.  

A variety of distance measures have been proposed to measure quantitatively the distance 

between objects from a set of categorical or continuous observations (see, e.g., Jajuga et al, 

                                                           
5 The number of groups is a choice variable for the researchers. Methods to choose the number of groups are 
discussed in Section 3. 



2003). Categorical data are usually measured in terms of similarity, while continuous data are 

commonly measured in dissimilarity (or distance). These two types of measures are mostly 

interchangeable as they carry the same amount of information regarding distance. 

When individual measures are binary, one may use the Matching Coefficient or Jaccard 

Coefficient as a distance measure. For each pair of individuals, the following table counts the 

matches and mismatches in the p variables. 

Table 1. Counts of matches and mismatches for two individual i and j 

  Individual j 

  1 0 Total 

Individual 
i 

1 a b a+b 

0 c d c+d 

Total a+c b+d p=a+b+c+d 

 

The Matching Coefficient approach simply calculates the ratio of one-one and zero-zero matches 

over the total number of characteristics p. 

 
ijs =(a+d)/(a+b+c+d)                                                                    (1)  

Alternatively, the Jaccard Coefficient ignores the zero-zero matches when calculating the 

similarity. Therefore, the Jaccard Coefficient is: 

 
ijs =a/(a+b+c)                                                                    (2)  

This is particularly useful when the absence of a large number of attributes may not necessarily 

lead to a high degree of similarity. For example, in biology, lacking similar attributes when 

comparing certain plants with certain insects does not lead to a high degree of similarity between 

them. Therefore, the principle to choose between the above two coefficients depends on the 

characteristics of the variables. When co-absence is considered informative, one may use the 

Matching Coefficient, otherwise the Jaccard Coefficient should be used6. 

                                                           
6 Similar coefficients have been proposed by Rogers and Tanimoto (1960), Sneath and Sokal (1973) and Gower and 
Legendre (1986). Their proposed coefficients vary the weight on the mismatches. 



When each variable has more than two categories, the similarity measure sijk is constructed for 

each variable: when two individual i and j are the same on the kth variable, sijk equals one, and is 

zero otherwise. The measure is then averaged over all p variables. The over-all similarity 

measure between individual i and j is calculated as: 

p

ij ijk
k=1

1s = s                                                                   (3)
p  

Alternatively, one can also divide multiple categories into two subsets, then convert the original 

data into binary datasets and finally apply the Matching Coefficient or Jaccard Coefficient 

approach as in equation 2 and 3. However, whether it is proper to divide categories into two 

subsets may depend on the specific dataset and the research question one wishes to address. 

When each individual has their characteristics measured as a continuous variable, distance 

between two individuals i and j are typically quantified by a dissimilarity index dij. A variety of 

dissimilarity measures are proposed, among which Euclidean distance is the most commonly 

used one:  

1/ 2
2

1
( )                                                            (4)

p

ij ik jk
k

d x x


 
  
 
  

where ikx  and jkx  are, respectively, the kth variable value of the p-dimensional observations for 

individual i and j. This distance measure has the appealing property that the dij can be interpreted 

as physical distances between two p-dimensional points 1 2( , ... )i i i ipx x x x and 1 2( , ... )j j j jpx x x x  

in Euclidean space. Alternatively, city block distance measures the dissimilarity of individuals on 

a a rectilinear configuration7. 

1
                                                                      (5)

p

ij ik jk
k

d x x


   

Where ikx  and jkx  are defined in the same manner as it is in Euclidean distance. Both of the 

above two measures are special cases of the general Minkowski distance with r=2 and r=1 

respectively: 

                                                           
7 It is also known as the Manhattan distance or taxicab distance as it is measures the travelling distance between 
two points on the street when city blocks are organized chess-board style. 



1/

1
   (r 1)                                                        (6)

rp r

ij ik jk
k

d x x


 
   
 
  

 In some cases, the data may contain both categorical and continuous variables. It is 

possible to construct a single measure by combining distance measures either with or without 

certain weighting function.  

 Notice that even though the distance measures mentioned above for categorical data are 

measuring distance in similarity while those for continuous data is in dissimilarity, in most cases, 

these two measure are interchangeable using the following formula8: 

1                                                        (7)ij ijd s   

In the following discussion, we assume the distance is measured in, or has been converted to, 

dissimilarity. 

 

II.2 Dissimilarity Index 

Whichever distance measure one may choose, one can form the dissimilarity matrix D by 

stacking the distance between all pairs of objects. In behavioral datasets, therefore, each row or 

column of a dissimilarity matrix corresponds to an individual. Each entry reflects a quantitative 

measure of dissimilarity between a particular pair of objects.  

An informative clustering should include groups such that the distance between objects in the 

same group is small, while the distance between groups is large. Based on this simple principle, a 

variety of so-called  “dissimilarity  indices”  (formed  by  taking  combinations  of  distance  measures)  

have been suggested.  

With qk
lvd  defined as the dissimilarity between the lth object in the qth group and the vth object in 

the kth group, the following equations gives a simple example of an index that measures 

heterogeneity within group m: 

                                                           
8 Gower (1966) showed that if a similarity matrix S, with element sij, is nonnegative definite, then the matrix D, 
with elements dij defined by equation 5 is Euclidean. 



2
1

1 1,

( ) ( )                                                                    (8)
m mn n

mm
lv

l v v l
h m d

  

   

Intuitively, this index is the sum of squared dissimilarities between two objects that belong to the 

same group m.  

Another commonly used similar index measures the sum of squared dissimilarities between an 

object in a cluster group m and the mean of objects in group m. It is also known as the trace of 

within-group dispersion matrix9. This index comprises the foundation for the k-means clustering 

algorithm which we will discuss later. 

2
2

1 1

1( ) ( )                                                           (9)
2

m mn n
mm
lv

l vm

h m d
n  

   

The final index we note here uses the smallest sum of distances to quantify dissimilarity of a 

group: 

mm
3 1,... 1
( ) min                                                                (10)

m

m

n

lvv n l
h m d




 
  

 
  

where a reference object v is connected with all other objects in the group m to form a star, which 

then determines the sum of distance of the group. Since the smallest sum of distance is achieved 

when the reference object v is at the center of the group,  the  index  is  often  referred  to  as  the  “star  

index”. h3(m) index is used in the k-median algorithm.  

 All three indices mentioned above measure the dissimilarity within the group m and 

ignore the information about the distance between group m and other groups. Separation indices 

are designed to capture this information. One commonly used separation index takes form h1(m) 

but now instead of summing over within group distance, the distance dml,kv captures the 

dissimilarity between the object l from group m and the object v from a different group k.
  

2
4

1 1
( ) ( )                                                                    (11)

m kn n
mk
lv

l k m v
h m d

  

  

                                                           
9 The dispersion matrix is derived from multivariate matrix X directly without constructing the dissimilarity matrix 
D. These two methods are mathematically equivalent, hence we omit the discussion of the other method. 



As separation indices are mostly capturing the same information as in dissimilarity indices10 and 

that the current computer algorithms tend to use the latter, we will refer readers who are 

interested in other separation indices to Everitt et al (2010). 

 

II.3 Clustering Criteria 

Having  chosen  an  index  to  represent  a  group’s  dissimilarity, clustering criteria can be defined by 

aggregating these group measures over all groups. The aggregation can be defined as the sum of 

dissimilarity over all groups as in 1( , )c n g , or as the maximum or minimum dissimilarity among 

groups as in 2 ( , )c n g or 3( , )c n g  below: 

1
1

( , ) ( )                                                             (12)
g

m
c n g h m




 

2 1,...
( , ) max [h(m)]                                                       (13)

m g
c n g




 

3 1,...
( , ) min [h(m)]                                                       (14)

m g
c n g


  

One of the most commonly used clustering criteria combines 1( , )c n g  with dissimilarity index 

2 ( )h m to represent the total sum of within group dissimilarity. The criterion can also be shown 

equivalent to the within-group sum-of-squares criteria derived directly from the n p  
multivariate matrix X.  

* 2
1 2

1 1 1 1 1
( , ) ( ) ( ) ( ) ( )                                                  (15)

m mn ng g g
mm m m m m
l l l

m m l m l
c n g h m d x x x x

    

      
 

Intuitively, when the above *
1 ( , )c n g clustering criterion is minimized, agents put into the same 

cluster share descriptive variables most similar to each other as compared to when they are 

allocated based on any other alternative clustering outcome. 

                                                           
10 Roughly speaking, the sum of squared distance of the sample comprises two parts: the within group sum of 
squares and the between group sum of squares. Since the total sum of squared distance is constant, minimizing 
within group sum of squares, the dissimilarity index mentioned earlier, is equivalent to maximizing the between 
group sum of squares, the separation index. 



There are a few features of the above clustering criterion of which any user should be aware. 

First, the method is scale dependent. For data that contains variables measured on different 

scales, one may reach different solutions from the same raw data standardized in different 

manners. Second, this clustering criterion imposes a  “spherical”  structure  on  the clusters and is 

unlikely to find clusters of other shapes, for example, agents that are separated into a few layers. 

Other clustering criteria exist to circumvent these two features11. However, any clustering 

approach has its advantages and disadvantages, and one must evaluate approaches within the 

context of particular applications.  

 

III. Clustering Procedure—K-means and K-median Clustering  

Ideally, one would consider all combinations of objects and choose the one that yields the lowest 

dissimilarity index within each group12. However, when the number of objects is large, it 

becomes infeasible to do this. Indeed, Liu (1968) provides the exact number of possible 

partitions one must consider in order to cluster n objects into g groups: 

1

1( , ) ( 1)                                                       (16)
!

g
g m n

m

g
N n g m

mg




 
   

 
  

That is, in order to partition 100 network agents into 5 groups, the number of possible 

combinations to examine is about 676.6 10 . The task becomes impossible even with modern 

computational power when the population under analysis comprises hundreds, if not thousands, 

of agents. This excessive computational burden has led scholars to develop numerical search 

algorithms to approximate clustering solutions. Here we review the two most commonly used 

numerical algorithms, k-means and k-median, both of which involve iterative updating processes 

for partitions and group centroids. 

 

 

                                                           
11 Attempts to create clustering criteria less restrictive regarding the cluster’s  shape  include  Scott  and  
Symons(1971), Symons(1981), Murtagh and Raftery(1984), Banfield and Raftery(1993) and Celeux and 
Govaert(1995) 
12 Indices that measure the separation between groups are also used in many other methods. We refer interested 
readers to Everrit et al (2011) 



 K-means Algorithm: 
As stated in its name, the k-means algorithms emphasize the mean of the clusters. Generally 

speaking, all k-means algorithms involve iterative updates of clusters by simultaneously 

relocating objects into the cluster whose mean is closest and then recalculating cluster means. 

Particularly, all k-means algorithms contain the following four steps: 

(1) g initial seeds are defined for each cluster by a p-dimensional vector, 1 2( , ,..., )m m m m
px x x x

where m
kx  stands for the kth characteristic of the initial seed of cluster m. The squared Euclidean 

distance between the ith object and the initial seed of cluster m is simply calculated as:
  

2 2

1
( )                                                             (17)m

p
m

ik kix
k

d x x


   

By comparing the result of equation (X) for an object with each initial seed (there are g of them), 

we allocate the object to the cluster where the result is minimized.  

(2) After all objects have been allocated to one cluster or another, the mean of the cluster is 

obtained by taking average over all objects that falls into each cluster. This is done for each 

dimension of the p characteristics: 

1 2( , ,..., )                                                  (18)m m m m
px x x x  

The above mean of clusters mx  can then replace the initial seeds mx and be used to calculate the 

squared distance between each object and each cluster centroid as in equation (X). Objects are 

again moved to the cluster which yields the lowest squared distance measure. 

(3) The step (2) is repeated. For each repetition, the old cluster mean is replaced by the one 

calculated from the latest membership. The process repeats until no objects change membership. 

Although all k-means algorithms attempt to minimize within-group sum of squared deviations 

from (group) mean, they may differ from each other in details. Depending on the specific dataset 

used, these differences may have substantial impact on the clustering results13. Here we trace a 

few important differences of these most popular algorithms. 

                                                           
13 We have found substantial differences in K-means clustering results produced by the standard packages in Stata, 
R and Matlab. We traced it to differences in the specific numerical algorithms used by each package.  



First, the methods of initialization affect the final clustering results. The simplest suggestion, 

currently used in SPSS, chooses g random data points as initial cluster seeds (MacQueen, 1967). 

A slightly different method randomly partition all data points into g mutually exclusive groups 

and use the group mean as initial seeds (Steinley 2003). These two methods both rely on the 

random process, therefore may yield a different clustering result each time the algorithm is 

performed.  

Various deterministic methods also exist. Astrahan (1970) suggest a two parameter method as 

follows: before initialization, two distance d1 and d2 are specified. Then for each data point, a 

density index is calculated as the number of objects that are less or equal to d1 distance away 

from the object. The object that yields the highest density is selected as the first seed. Objects 

that are within the distance of d2 to the first seed are removed from the consideration. A second 

seed is selected if it has the highest density among the remaining objects. The objects that are 

within distance d2 to the second seeds are removed. The process continues until all g seeds are 

determined. A similar process was suggested by Ball and Hall (1965) and implemented in the 

PROC FASTCLUS procedure in SAS. Although other types of random or deterministic 

processes exist (see Milligan, 1980 and Bradley and Fayyad 1998 for examples), Steinley (2003) 

suggest that the most robust method that outperform most of the arbitrary initialization rules is to 

use multiple random restarts (in order of thousands) and pick the one result that gives the 

smallest clustering criteria value. Kmeans package in R allow the user to specify the number of 

restart. 

Second, to further minimize the squared distance as in equation (X), some algorithm suggests to 

introduce an additional stage of single-object reallocation process after the group reallocation has 

been settled (Spath, 1980; Hartigan and Wong, 1979). Specifically, after performing the standard 

iterative process (1)-(3) mentioned above, if there is an object in cluster m such that 

2 2( ) ( )                                                     (19)
1 1

mm mmm m
i i

m m

n nd d
n n






 

 



The object i should be moved from cluster m to cluster m’ and the squared distance (as in 

equation (X)) is reduced. The objects will be checked and moved if necessary one after another 

until no further improvement can be achieved by this process14.  

 K-median Algorithm: 
In more recent years, the k-median algorithm has received increasing attention (Kaufman and 

Rousseeuw, 1990; spath, 1985; Hansen and Jaumard, 1997; Kohn et al, 2010). This algorithm 

relocates an object to a group whose median is the closest to it according to certain distance 

measure. Numerically, the specific clustering procedure proceeds like k-means except that the 

clustering criteria in equation (6) is replaced by 

*
2

1 1
( , ) ( )                                                   (20)

mng
m m
l

m l
c n g x x

 

   

Where mx
 
refers to the median vector of the mth cluster. The original idea of using median 

instead of mean is to reduce the influence of outliers. However, Garcia-Escudero and Gordaliza 

(1999) pointed out that k-median method can also be as affected by outliers as k-means since the 

“joint”  selection  of  two  medians are unlikely to be as robust in terms of centralization as when 

only one random variable is involved. 

Variations of k-median algorithm also exist in terms of how initial seeds are selected and how 

objects are swapped between clusters. PAM (Partitioning Around Medoids), developed by 

Kaufman and Rousseeuw (1990) and implemented in the pam package of R language, is one of 

the most popular one. The algorithm sets the objective function as the sum of distance between 

each object and its nearest medoid. The initial seeds in PAM are chosen by a greedy built phase15 

where the seed is added one after another and only the one that brings the largest improvement 

on the objective function will be selected.  

Once the built phase completes, a multi-iteration swapping stage begins. For each iteration, a 

medoid object i and a non-medoid object j will be selected that brings the largest improvement 

on the objective function if i and j are switched. The iterations continue until no improvement is 

possible. Since in both built phase and swapping phase, there are many pairs of objects to go 

                                                           
14 The kmeans package in Matlab and R adopt this two-phase iterative algorithm. 
15 In programming, greedy algorithms refer to the ones that are based on heuristics who find locally optimal 
choice. 



through to find the largest improvement, the original PAM algorithm is very time consuming 

with large dataset and increasing number of clusters16.  

 

IV. Methods for Choosing the Number of Clusters 

Independent of the choice of clustering criteria and algorithms introduced above, one also needs 

to choose the method to determine the number of clusters. The past literature has recommended 

many methods that are algorithmic, graphical or formulaic. All of these methods are based on 

some logical heuristics. To judge which method is better at recovering the number of clusters, 

Milligan and Cooper (1985) conducted a Monte Carlo analysis to compare 30 of the most 

popular ones and concluded that the top performer is the one suggested by Calinski and Harabasz 

(1974) (which we denote by C-H)17. Another popular method readily available in many 

commercial packages is Silhouette Width. The output of this method includes a visualization 

giving direct clue on the performance of clustering under different numbers of clusters. We 

review Silhouette Width in this paper as well. 

 

IV.1 C-H Index 

C-H (1974) suggested that the optimal number of clusters, g*, should maximize the following 

value C(g): 

( ) ( )( )                                                     (21)
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representing the between-group dispersion matrix, and 

                                                           
16 The same authors also developed a similar but less deterministic method CLARA (Clustering LARge Applications), 
implemented in R language. This method could reduce the computing time significantly when a dataset is large. 
Meanwhile, STATA implements its cluster kmedians command in a similar way as in the basic k median algorithm 
as described at the beginning of this subsection. 
17 Another successful technique developed by Duda and Hart (1973) works with hierarchical cluster methods. The 
network data do not fit these types of cluster analysis. 
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representing the within-group dispersion matrix, both of which derive from the original 

multivariate matrix X.  

   

IV.2 Silhouette Width 

The Silhouette Width index is first mentioned in Rousseeuw(1987). His paper argues that due to 

the absence of visualization for the quality of cluster, it is hard to tell whether an object is well-

classified or misclassified. He then proposed the index and the plot of Silhouette Width to 

visualize the quality of cluster. Interestingly, the Silhouette Width Index has become increasingly 

popular as a way to choose the number of clusters and has been adopted by most commercial 

packages along with the Calinki-Harabatz Index we introduced above. 

For a given clustering result, the Silhouette width indices, denoted by s(i), are calculated for each 

object  i=1,2,…,n,  which  are  then  combined  into  a  Silhouette  plot.  Individual  silhouette  width  s(i)  

is defined as: 
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where M(i) refers to the cluster that contains object i, nM(i) refers to the number of objects in 

cluster M(i) and C refers to any cluster other than M(i).  

The first term in the numerator refers to the minimum average distance of an object to all 

members of another cluster. It calculates the average distance from i to all members of an 

arbitrary cluster C. After the average distance is calculated for all arbitrary clusters, the closest 

cluster (in terms of distance to object i) is used. 

The second term in the numerator refers to the within cluster average distance for object i. The 

term simply calculates the distance between object i and each other object in the same cluster and 



then takes an average. The denominator is the maximum of the two terms that appear in the 

numerator. 

From the above formula, it is easy to see that s(i) would increase as object i is closer to other 

objects in the same group and farther away from objects in other groups. However, more 

characteristics of the index are revealed by evaluating s(i) under three different conditions.  

First, note that if 
( )( ) ( )
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 .That is s(i) is always positive and approaches 1 as the measure of within 

dissimilarity (the numerator) is much smaller than the measure of the smallest between 

dissimilarity (the denomenator).  

Similarly, consider the opposite case where 
( )( ) ( )
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condition, s(i) can be simplified as 
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, which is always a negative number 

and approaches -1 if within dissimilarity is large and the between dissimilarity if small. That is to 

say that the silhouette width index defined as in Rousseeuw(1987) is an index between -1 and 1 

with a higher positive number indicating a better clustering quality. 

In practice, one should choose the number of clusters that maximizes the average Silhouette 

Width across all objects. 

 

 

 

 



V. Analyzing Network Data Using Cluster Analysis—An Example 

V.1 The Dataset 

To demonstrate the usefulness of cluster analysis in studying innovation in networks, we borrow 

the data from an experimental study that looked at individual behavior in a networked innovation 

game (Rong and Houser 2012). The study contains the repeated choice data from 160 subjects. 

Each subject is involved in a decision making game where they can earn money by either 

choosing to pay a high cost to provide a public good (representing costly but beneficial 

innovation) or choosing to pay a low cost to link to others who provide the public good 

(representing the follower or free-rider). Therefore, for each subject and each period, the dataset 

contains the contribution decision (1 if contributing to public goods, 0 if not contributing to 

public goods) and the linking decision (1 if linked to others, 0 if not linked to others) for each 

subject.  

There are several treatments designed to mimic different market institutions which arguably 

could affect the level of innovation. The authors found significant difference between each 

institution. However, it is interesting to understand how each institution works to generate the 

difference in innovation. This is a task in which cluster analysis can play an important role. We 

use the dataset from that study to demonstrate how to use cluster analysis in this context and 

what level of new knowledge can be obtained from this exercise. 

Our analysis proceeds in two steps. First, we estimate for each individual the parameters that 

characterize the way they make decisions given the information they have during their decision 

time. Then, we use cluster analysis to group similar individuals according to how their decision 

depends  on  the  information  they  have.  We  call  this  dependence  “decision  rules”.  In  particular, 

we run a linear regression for each individual with the repeated decisions on contributing to 

public goods (or not) as a binary dependent variable. We regress this contribution decision on a 

constant,  a  dummy  for  whether  investing  is  rational  and  a  “history  index”  characterizing  the  

subjects contribution behavior in the previous two rounds (see also Kurzban and Houser, 2005). 

After this analysis, individuals are characterized by the three estimated coefficients from their 

regression results. We have 142 subjects in our sample18. 

                                                           
18 We drop 18 subjects in this process, as there is zero variation in their dependent variables therefore we cannot 
estimate the coefficient for those subject using regression analysis. 



In the second step, we implement the k-means algorithm to cluster these estimates into groups of 

behavioral rules.  

The purpose of this analysis is to draw inferences about the behavioral rules of individuals in 

various treatments. We found that the difference in treatment design leads to different behavior 

rule usage. Note that our maintained assumption is that behavioral rules in all treatments are 

formed using elements from a menu of information that are finite and identical (in this case, 

decisions  could  be  either  “rationality  dependent”,  “history  dependent”  or  “constant  level  

determined”), but that different treatments lead to rules that differ at the level of usage on each of 

this information. Without ex ante knowledge of what kind of weights people may put on each 

piece of information, we use cluster analysis to detect them. Cluster analysis allows us to explore 

behaviors among individuals without the need to pre-define the nature or number of possible 

rules (see also Houser et al, 2004).  

V.2. Behavioral Rule Parameters 

The  independent  variables  we  include  in  our  regressions  are  meant  to  capture  a  person’s:  (i)  base  

rate willingness to contribute to public goods (captured  by  the  regression’s  constant);;  (ii)  

consistency with individual rationality (captured by the a dummy variable that takes value one if 

it is optimal to contribute);;  and  (iii)  propensity  to  form  a  “habit”  of  choice  in  the  sense  that  they  

do what they did before (captured by the variable indicating the lagged decisions for the past 2 

rounds). Equations 25 specifies our regression equations for contribution decision: 
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The  above  regressions  are  repeated  for  each  individual.  Each  individual’s  estimates  can  be  

represented by a point in 3-space (See Appendix A).  

VI.2. K-means Clustering  



We implement our k-means cluster analysis, as well as cluster number selection, using R. Based 

on the C-H index, we find three clusters in contribution decisions (See Appendix B).  

Figure 1. Projections of Estimates from Contribution Decision 

(a) 

 

(b) 

 

(c) 

 



The three panels of Figure 1 are the three 2-space projections of the estimates 1 2 3{ , , }    from 

regression on contribution decisions (Equation 25) into corresponding 2-space. Each point 

represents  an  individual’s  estimates  from  his/her  contribution decisions regression. Points with 

the same marker belong to the same cluster.  

It is clear from visual inspection that our clusters are well-separated. To provide statistical 

evidence on the strength of this separation, we analyze the separation along each independent 

variable’s  axis.  Mann-Whitney tests find significant differences between all pairs of clusters in 

each axis (p<0.001), with the exception of the constants in the triangle and round clusters.  

Not only are the clusters clearly separated, the location of the clusters also carries meaningful 

interpretation in our sample. Table 2 provides the mean estimate for each independent variable 

and for each cluster, and also reports whether that mean is significantly different from zero.  

Table 2. The Mean of Estimates from Regression on Contribution Decision 

 Square Cluster Triangle Cluster Round Cluster 

Rational to 
contribute 

0.8190 

(0.0000) 

0.3411 

(0.0000) 

-0.0978 

(0.0054) 

Lagged choice -0.0408 

(0.1480) 

0.1745 

(0.0000) 

0.0782 

(0.0120) 

Base rate(constant) 0.0175 

(0.2589) 

0.0137 

(0.7066) 

0.4279 

(0.0000) 

Number of subjects 57 46 39 

Note: p-value from Wilcoxon signed-rank test in parentheses 

Based on the results from Table 2, we summarize the characteristics of the three clusters that 

define the three behavioral rules used by our subjects. Note that the decision rules below are not 

pre-specified. It is generated as a result of clustering. 

(1)  We define  the  cluster  indicated  with  round  markers  as  the  “Rational”  type.  People  that  belong  

to this cluster are guided by the rationality of the current opportunity to contribute. They focus 

less on their past choices, and their base rate of investing is near zero.  



(2) We  define  the  cluster  indicated  by  triangle  markers  as  the  “Habit”  type.  Subjects  in  this  

cluster are guided by rationality, but relatively less than the Rational type. Instead, their 

current decisions follow closely their past decisions.  

(3) We define  the  cluster  indicated  by  square  markers  as  the  “Dogmatic”  type.  We  find  that  these  

subjects have the highest base rate of investing among all three types. 

The clear separation of the three types of individuals in this experiment shows that innovation is 

not generated for the same reason for all people. Some people develop new ideas because it is 

optimal for them to do so. Some people innovate for the reason that they have done that before. 

The rest of the innovators choose to do so without concern for individual payoffs or their 

personal history. They are the dogmatic innovator. 

 

Which types of innovators drive innovation in society and how can we promote their existence? 

These questions can be addressed by investigating how institutional characteristics in our various 

treatments affect the types of behavioral rules subjects use.  

The level of innovation is lowest at the two treatments where subjects can make unconstrained 

choice19.  This low level of innovation coincides with a concentration of Dogmatic type subjects 

(41.38% and 90% respectively) in both treatments. That is to say, having a concentration of 

players using the Dogmatic rule is not conducive to innovation. The unconstrained choice 

treatments may be unhelpful in generating innovation. 

On the contrary, for the other two treatments that feature constrained choice sets, the data include 

relatively high levels of innovation. In those two “successful” treatments, the large majority of 

subjects (92%) choose to behave rationally or follow a habit (88.89%). We found zero dogmatic 

innovators in these two treatments. 

In the last treatment where a medium level of innovation is observed, it is also the case that no 

subject belongs to the Dogmatic type. 

The knowledge gained from cluster analysis provides a clear picture on which treatment design 

generates the most innovation and the reasons why that has happened: the behavioral rules shift 

away from the dogmatic innovator. This finding is not available in the absence of clustering 

                                                           
19 The detail of the treatment design is of less importance to this study. We suggest the interested readers to find 
detailed description of the experiment in Rong and Houser (2012). 



results and it would seem very difficult to come up with it as an ex-ante hypothesis. For these 

reasons, this example well-demonstrates the value of cluster analysis in the study of large and 

complex datasets. 

 

VI. Summary 

Cluster analysis is an intuitive method to analyze complicated data sets. Without making strong 

assumptions regarding the data generating process, the method divides observations into discrete 

groups based on patterns of similarity. We reviewed key features of cluster analysis in this paper. 

First, we reviewed several distance measures appropriate for different types of measures (binary, 

categorical or continuous). We then illustrated how distance measures can be combined into dis-

)similarity matrices and how these matrices are further used in forming clustering criteria. We 

also discussed the detail of two popular algorithms: k-means and k-median. Finally, we reviewed 

two indices, Calinski-Harabatz Index and Average Silhouette Width, used to discover the 

number of clusters in the data. We offered an example of this approach using experimental 

network data, and argued that individual decisions made in a network environment are often 

generated by complex behavioral rules that can be difficult to specify a priori. Such 

environments may particularly benefit from clustering methods.  
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Appendix A: 3-space  Plot  for  Individuals’  Estimates  by  Treatment 

 

 

Note: different markers represent different treatments 
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