
 

 
 

 

 

Optimal Exploration 
  

David Austen-Smith and César Martinelli 
 
 
 

September 2018 
 

 
 

Discussion Paper 
 
 
 

Interdisciplinary Center for Economic Science  
4400 University Drive, MSN 1B2, Fairfax, VA 22030 
Tel: +1-703-993-4850    Fax: +1-703-993-4851 
ICES Website: http://ices.gmu.edu 
ICES RePEc Archive Online at: http://edirc.repec.org/data/icgmuus.html 

 



Optimal exploration⇤

David Austen-Smith† César Martinelli‡

September 5, 2018

Abstract

Consider a decision maker who has to choose one of several alternatives,
and who is imperfectly informed about the payoff of each of them. In each
period, the decision maker has to decide whether to stop and take one of
the alternatives, or to continue researching the alternatives. New informa-
tion is costly and is never conclusive. We provide a dynamic programming
formulation of the decision maker’s problem with either a finite deadline or
no deadline, and give necessary and sufficient conditions for research to take
place for some prior beliefs about the alternatives. We show that, at least
for short deadlines, the decision maker either explores the best alternative
and stops after good news, or explores the second best alternative and stops
after bad news, with the former path being optimal if the decision maker is
relatively optimistic about the payoff of the alternatives.

1 Introduction

Consider the following situation. A decision maker has to choose one of several
alternatives. There is only imperfect information about the payoff of each of the
alternatives. Before choosing one of them, the decision maker can research them
sequentially. New information is costly and is never conclusive. In each period,
then, the decision maker has to decide whether to stop and take one of the al-
ternatives (presumably, the one with the largest expected payoff), or to continue
researching the alternatives. The following examples fit this description:
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• (Policy search) A collective decision making group has to choose one of a set
of available policies to promote a given group objective. The consequences
of choosing any policy are not known surely but the group can devote time
and effort to researching the alternatives prior to any final decision. Simi-
larly, legislative committees often have the responsibility of determining the
alternative to a given status quo policy, prior to the general assembly voting
over whether to maintain the status quo or to reject it in favour of the alter-
native. The committee first engages in costly research to decide upon which
of the available alternatives to propose.

• (House hunting) A family is considering several alternatives for a new home.
At each moment in time, the family can visit only one of the new houses, and
obtains an imperfect signal of the house quality, until making a final decision
on which house to buy.

• (Hiring decision) A firm is considering several candidates for a job. At each
moment the firm can acquire new information about one of the candidates,
for instance by conducting an interview or organizing a visit, until making a
final decision on which candidate to hire.

• (Exploratory drilling) An oil company is hesitating between a number of
potential drilling locations. Before exploitation starts, then, it can do some
exploratory drilling using drilling methods that are cheaper than a production
well.

• (Nest search) A beehive, composed of perfectly altruistic individuals, must
decide on the location of a new nest. Locations can be investigated one at a
time, by sending a scout who reports truthfully to the hive. The bees have to
decide at each moment which location to investigate and when to stop and
move jointly to a new nest location.

Each of these applications has been analyzed using some application of the
following canonical frameworks, none of which fully captures our set-up:

1. Bandits. A defining characteristic of bandit problems is that the alternatives
are statistically independent. Although this is true of the alternatives in our
model, exploring any alternative here yields only a noisy signal of that al-
ternative’s payoff: payoffs from an alternative can be realized only if the
decision maker stops exploring and chooses that alternative. An important
consequence of these features is that the exploration-values of alternatives
are no longer statistically independent.
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2. Pandora’s Box. In a Pandora box problem, a decision maker obtains a per-
fectly informative signal about each alternative after investigating it. In our
problem, instead, information obtained about an alternative is never conclu-
sive, so that it may be optimal to investigate the same alternative more than
once.

3. Sequential sampling. In the classical sequential sampling problem, the se-
quence of experiments is fixed in advance. In the related sequential search
problem, experiments correspond to different alternatives arriving randomly
over time. In the costly research problem, the variable of interest is the inten-
sity rather than the direction of search. In our problem, the decision maker
can decide which experiment to perform at each moment in time before set-
tling for one of the alternatives.

The decision maker of interest here is required to find the optimal sequencing
of experiments, taking into account the information available at each moment. As
is well known, in both the bandit and Pandora problems, it is possible to construct
an index for each alternative with information about that alternative alone, such
that the decision maker’s optimal choice in any period is the alternative with the
highest index. We show that in our problem, the value of exploring each alterna-
tive is linked to beliefs about the other alternatives in a way that does not admit
construction of an independent index for each of the alternatives. In particular,
we show (theorem 5.1) that whether investigating the top or the second alternative
is optimal depends on beliefs about the third, even if the third is not immediately
investigated.

We offer an analytical characterization of the optimal policy when there are two
remaining periods before a final decision must be made. If beliefs about the top
two alternatives are close to symmetric, then it is optimal to investigate either one
of the top two and to stop afterwards, selecting the alternative with larger posterior
expected value. If beliefs about the top two alternatives are asymmetric enough,
and initial beliefs are relatively optimistic (in a sense that we make precise), then
it is optimal to investigate the top alternative, to stop after good news, and to in-
vestigate again after bad news. Finally, if beliefs about the top two alternatives are
asymmetric enough, and initial beliefs are relatively pessimistic, then it is optimal
to investigate the second alternative, to stop after after bad news, and to investigate
again after good news.

The problem we investigate is related to the multi-armed bandit problem. Pay-
offs from playing any arm (exploring an alternative) in bandit problems are gener-
ated in every period. Specifically, the payoff from playing any arm depends only
on outcomes in periods during which the arm is played and is therefore statistically
independent of any other arm. The literature on bandit problems is considerable:
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Berry and Fristedt (1985) and Gittins et al. (2011) offer overviews of the theory
and Bergemann and Välimäki (2008) provide a succinct summary of some major
applications in economics. The key result from the theory is that so long as the
arms are independent, the optimal exploration rule is characterized by an index,
the Gittins Index (Gittins, 1979), which allows to rank the alternatives in terms of
their desirability.1In our framework, payoffs only occur once all exploration has
stopped permanently and, although the payoff from the chosen alternative at any
date is independent of the payoffs associated with other alternatives, the value of
exploration is not, as remarked above, so independent, undermining the possibility
of an index characterization of an optimal exploration rule.

In the Pandora’s problem, introduced by Weitzman (1979), there is a given
set of mutually exclusive options and a DM (Pandora) who chooses the order in
which to investigate alternatives and when to stop investigating. The reward as-
sociated with any given option is unknown ex ante and can be enjoyed only after
Pandora stops investigation and chooses the alternative with the highest observed
reward. The distribution of rewards for any alternative and its cost of investiga-
tion are known. The true payoff from any alternative, however, is fully revealed
conditional on exploring that alternative. Assuming that Pandora’s objective is to
maximize her discounted expected reward net of aggregate search costs, Weitzman
(1979) proves that the optimal search rule for his setting is described by a “reser-
vation price rule” akin to the Gittins index. Recent extensions of the Pandora box
problem include Olszewski and Weber (2016) and Doval (2018). The key differ-
ence between our set-up and theirs is that exploration in Weitzman’s environment
yields the true value of any alternative but this is never the case for the model below.
As a result, the DM in our model may revisit previously investigated alternatives
multiple times. Furthermore, we show that no reservation price or index rule exists
in our model.

The classical sequential sampling problem was introduced by Wald (1945,
1947) and by Blackwell and Girshick (1954). McCall (1970), Mortensen (1986)
and a large literature afterwards investigate the sequential search or job search
problem. Moscarini and Smith (2001) introduce a general dynamic model of costly
research in which an impatient decision maker (DM) has to choose one from a set
of alternatives, the respective payoff of which depends on the true state of the
world. Before choosing, the DM can acquire noisy information over time about
the state at a (state-independent) cost. The main difference between their setup and
ours is that they focus on the intensity of research, while we focus on the direction
of research. In particular, they assume decision making in continuous time; the

1The index property fails if arms are costly to switch (Banks and Sundaram, 1994) or to maintain
(Forand, 2015).
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costs of information regarding the true state are strictly convex increasing in the
level of information acquisition; and state-specific payoffs across the set of alter-
natives are not limited to be one of two values as in our model. In addition to char-
acterizing when information acquisition stops and an alternative chosen, their main
result, among several, is that the optimal level of information acquisition increases
in the Bellman value prior to choosing an alternative.2 In our model, however,
learning occurs piecemeal through sequentially exploring specific alternatives and
we focus on the optimal decision at any time regarding which alternative, if any, to
explore.

Less closely related contributions in the large literature on strategic experi-
mentation include Bolton and Harris (1999) and Keller et al. (2005). Both papers,
discussed along with others by Moscarini and Smith (2001), study dynamic in-
formation acquisition models with two alternatives, in which there are many in-
dividuals simultaneously making information acquisition decisions through time.
All information discovered is public. The additional tensions addressed in these
papers, therefore, involve individuals’ opportunities to free-ride on others’ search.

Section 2 of the paper introduces the model and section 3 formulates the DM’s
problem as a dynamic optimization problem, establishing a variety of useful re-
sults. The following two sections, respectively, completely characterize the optimal
research policy when the number of research periods remaining before a decision
is either one (section 4) or two (section 5). Section 6 provides a partial charac-
terization of the optimal policy for a longer horizon, while section 7 provides a
computed example. Section 8 concludes. The appendix contains some auxiliary
proofs.

2 The exploration problem

Time runs discretely, from t = 0 to infinity. There is a finite set of alternatives X ,
indexed by x 2 X = {1, . . . ,n}. Each alternative has a quality w

x

2 {0,1} indicat-
ing whether it is low quality or high quality. The qualities of the alternatives are
independent random variables and their realization are not observed by the deci-
sion maker (DM). At time 0, beliefs about the quality of each alternative are given
by p

0 = (p

0
x

), where p

0
x

2 (0,1) indicates the prior probability that alternative x is
high quality. There is a deadline t 2 N[ {•} = {0,1,2, . . .}[ {•}. At each time
0  t < t, if no alternative has been chosen yet, the DM can either research one of
the alternatives in X , or choose one of the alternatives in X . If t 6= •, then the DM

2This result is driven by strict convexity of costs in the level of information acquisition, an eco-
nomically meaningful assumption that yields a variety of testable predictions from the model regard-
ing R&D.
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must choose an alternative at time t if no alternative has been chosen yet.
If alternative x is researched, then the DM obtains a payoff u

t

=�c  0 in that
period, and gets to observe a signal s

t

x

2 {0,1}. If alternative x is chosen at time t,
the DM obtains the payoff u

t

= w
x

in that period, and the payoff u

t

0 = 0 in every
subsequent period. That is, choosing an alternative is irreversible. DM’s utility is
the discounted sum of period payoffs, Â

t�0 dt

u

t

, where d 2 (0,1).
Conditional on the quality of the alternative, signals are drawn independently

of previous signals of the same or other alternatives, with probability distribution
given by

Pr(st

x

= 1|w
x

= 1) = Pr(st

x

= 0|w
x

= 0) = q,

Pr(st

x

= 1|w
x

= 0) = Pr(st

x

= 0|w
x

= 1) = 1�q

for some q 2 (1/2,1), where s

t

x

= 0 represents “bad news” and s

t

x

= 1 represents
“good news” about alternative x. Researching alternative x in period t allows the
DM to update beliefs about alternative x while keeping beliefs about other alterna-
tives constant.

A plan p specifies for each time 0  t < t such that no alternative is chosen yet,
an action a 2 X [{s

x

}
x2X

, with a = x meaning ‘research alternative x,’ and a = s

x

meaning ‘stop and choose alternative x,’ as a function of the initial beliefs and the
history of actions and signals in every previous period. If t 6= •, a plan specifies as
well an action a 2 {s

x

}
x2X

in period t, if the DM has not chosen an alternative yet,
as a function of the initial beliefs and the history of actions and signals in every
previous period. A plan p is optimal if the expected utility of adopting p is larger
than or equal to the expected utility of adopting any other plan for any possible
initial beliefs.

Since we are interested in optimal plans, we restrict henceforth the set of avail-
able actions before the deadline to be A = X [ {s}, with a = s meaning ‘stop and
choose one of the alternatives with maximum (updated) probability of being high
quality,’ and simply assume that one of the alternatives with maximum (updated)
probability of being high quality is chosen at the deadline if society has not chosen
yet.

Given the history of previous actions and signals before any period t � 1, let
p

t = {p

t

x

} denote the (updated) beliefs that each alternative x is high quality. Let
P = [0,1]n be the set of possible beliefs. We say that a plan is Markovian if for
every t � 0 there is a function f

t

: P ! A such that p specifies action f

t

(p) at time
t if p

t = p. We refer to f

t

as the policy associated to Markovian plan p at time
t. We say that a plan p is stationary if there is a function f : P ! A such that p
specifies action f (p) after every history such that p

t = p for every t � 0. That is, a
stationary plan specifies the same policy every period. Obviously, stationary plans
are of interest if t = •.
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3 Dynamic programming formulation

We can describe the DM’s problem a dynamic programing problem as follows. Our
state space is P = [0,1]n. The set of actions is the same for all states and is given
by A for all t < t and by {s} for t � t. The reward function is given by

r(p,a) =

⇢
�c if a 2 X

(1�d)max
x2X

p

x

if a = s

Note that, in order to adapt the problem to a recursive formulation, we specify a
per period utility after stopping such that the expected discounted utility is equal to
the highest belief at the time of stopping, which is obtained if choosing optimally
at that time.

Given any state p 2 P, we denote p

x+ the state given by p

x+
y

= p

y

for all y 2
X \{x} and

p

x+
x

=
p

x

q

p

x

q+(1� p

x

)(1�q)
⌘ p

+
x

.

Similarly, we denote p

x� the state given by p

x�
y

= p

y

for all y 2 X \{x} and

p

x�
x

=
p

x

(1�q)

p

x

(1�q)+(1� p

x

)q
⌘ p

�
x

.

Note that p

+
x

and p

�
x

are the updated beliefs about alternative x after ‘good news’
and ‘bad news,’ respectively.3 Let also

q

+
x

(p) = p

x

q+(1� p

x

)(1�q) = 1�q+ p

x

(2q�1)
q

�
x

(p) = p

x

(1�q)+(1� p

x

)q = q� p

x

(2q�1),

denote the probability of ‘good news’ and ‘bad news’ about alternative x, respec-
tively.

The law of motion, giving us the probability distribution over future states
given the current state and action is given by

Q(p

0|p,a) =

8
>><

>>:

1 if p

0 = p and a = s

q

+
x

(p) if p

0 = p

x+ and a = x

q

�
x

(p) if p

0 = p

x� and a = x

0 otherwise

.

The set of future states with positive probability after state p is given by

S(p) = {p

0 2 P : Q(p

0|p,a)> 0 for some a 2 A};
3For given q, we treat ()+ and ()� as functions from [0,1] to [0,1]. In particular, (r+)� = r for

all r 2 [0,1]. Note that r+ R n () r R n�. Similarly, we treat ()x+ and ()x� as functions from P

to P. In particular, (p

x+)x� = p for all p 2 P.
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note that S(p) is finite.
Note that the parameters of our dynamic programming problem are the number

of alternatives n, the cost of research c, the quality of information q, the discount
factor d, and the deadline t.

Let W be the space of bounded continuous functions W : P ! ¬, equipped
with the sup norm, and let the transformation T : W ! W be defined by

(TW )(p) = max
a2A

⇥
r(p,a)+dÂ

p

02S(p) Q(p

0|p,a)W (p

0)
⇤
. (1)

It is easy to see that T satisfy the Blackwell conditions, that is (a) W � W

0 for all
p implies TW � TW

0 for all p, and (b) for any constant b, T (W +b) = TW +db.
Hence, from theorem 5 in Blackwell (1965), T is a contraction with modulus d,
that is ||TW �TW

0||  d||W �W

0||. From the Banach fixed-point theorem, T has
a unique fixed point V 2 W satisfying

TV =V, (2)

and moreover ||T n

W �V || dn||W �V || for all n.
Let V be the space of continuous functions W : P ! [0,1], and note that V is

a closed subset of W and moreover, W 2 V implies T

n

W 2 V for all n. Since V
is closed, it follows that V 2 V .

Now let
W0(p) = max

x2X

p

x

;

this is the expected utility of the Markovian plan with policy f

t

(p) = s for all p for
all t � 0; by necessity, it is the expected utility of the optimal plan if the deadline
is t = 0. Then iteratively define W

k

2 V by

W

k

= TW

k�1.

If t � k, W

k

(p) is the expected utility of a Markovian plan that specifies a selection

f

t

(p) 2 argmax
a2A

⇥
r(p,a)+dÂ

p

02S(p) Q(p

0|p,a)W
k�t�1(p

0)
⇤

for every 0  t < k, and f

t

(p) = s for t � k.
We have:

Theorem 3.1. Fix n,c,q, and d. (i) If t 6= •, a Markovian plan is optimal if and

only if its expected utility in period t, as a function of current beliefs, is given by

Wt�t

for each t  t. Moreover, there is a Markovian optimal plan. (ii) If t = •, a

stationary plan is optimal if and only if its expected utility, as function of current

beliefs, is given every period by V satisfying equation 2. Moreover, there is a

stationary optimal plan.
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Proof. Item (i) follows from backward induction. For item (ii), necessity and suffi-
ciency of the optimality equation 2 follow from theorem 6(f) in Blackwell (1965),
which deals with infinite horizon discounted dynamic programming problems. Ex-
istence follows from theorem 7 in Blackwell (1965), which establishes that there is
in fact a stationary plan whose expected payoff satisfies equation 2 when the action
set is finite.

Intuitively, W

k

(p) is the value associated to the DM problem when there re-
main k periods ahead before the deadline, and V (p) is the value when there is no
deadline.

The following result establishes that in fact the sequence W

t

converges to V ,
and provides a computationally convenient bound.

Corollary 3.1. The sequence of functions {W

k

} is monotonically increasing and

converges uniformly to V , with V �W

k

 (W
k

�W

k�1)⇥d/(1�d) for all p.

Proof. Since increasing k relaxes the constraint requiring p̂
k

to stop at time k, it
follows that the expected utility of p̂

k

is larger than or equal to the expected utility
of p̂

k�1 for any given initial beliefs, and smaller or equal to the expected utility of
the optimal plan, or equivalently W

k�1 W

k

V for every k � 1 and every p 2 P.
From monotonicity, the definition of W

k

, and the fact that T is a contraction, we get
V �W

k

=V �T

k

W0  dk(V �W0). Uniform convergence follows.
Again from the fact that T is a contraction, we get V �W

k

= V � TW

k�1 
d(V �W

k�1). The bound in the statement of the theorem follows from rewriting
the previous inequality.

The next result provides some convenient facts about the functions W

k

and V .

Corollary 3.2. W

k

for k � 0 and V are (i) permutation invariant and (ii) weakly

increasing functions.

Proof. Part (i) is immediate from the definitions of W

k

and V . For part (ii), we claim
first that if W

k�1 is weakly increasing, then W

k

is weakly increasing. To see this,
note that for p̃ 2 P and p̂ 2 P such that p̃ � p̂ and for any given alternative x, the
distribution over P induced by Q(p

0|p̃,x) exhibits first order stochastic dominance
over the distribution over P induced by Q(p

0|p̂,x). Hence, in the problem defining
W

k

, the expected payoff of searching alternative x

�c+dÂ
p

02S(p) Q(p

0|p,x)W
k�1(p

0)

is weakly increasing in p if W

k�1 is weakly increasing. The expected payoff of
stopping, max

x

p

x

, is also weakly increasing in p. Since W

k

(p) is the maximum

9
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of the expected payoffs of researching the different alternatives and the expected
payoff of stopping, the claim follows.

Since W0(p) = max
x

p

x

is weakly increasing, from the previous claim and in-
duction it follows that W

k

is weakly increasing for all k � 0. Since {W

k

} converges
to V (theorem 3.1), it follows that V is weakly increasing as well.

For k � 1, let

W

x

k

(p) =�c+dÂ
p

02S(p) Q(p

0|p,x)W
k�1(p

0)

be the expected payoff of researching alternative x if there are k remaining peri-
ods and the DM chooses optimally from next period on. Similarly, if there is no
deadline, let

V

x(p) =�c+dÂ
p

02S(p) Q(p

0|p,x)V (p

0)

be the expected expected payoff of researching alternative x if the DM adopts from
next period on an optimal plan. By definition of W

k

and V ,

W

k

(p) = max{max
x

p

x

,max
x

W

x

k

(p)} for k � 1

and
V (p) = max{max

x

p

x

,max
x

V

x(p)}.

To each k � 1 we can associate a (k-optimal) policy correspondence s
k

: P ◆ A

given by

s
k

(p) = argmax
a2A

⇥
r(p,a)+dÂ

p

02S(p) Q(p

0|p,a)W
k�1(p

0)
⇤
.

Note that x 2 s
k

(p) if and only if W

k

(p) = W

x

k

(p). From theorem 3.1, if there is
a finite deadline, a Markovian plan is optimal if and only if the associated policy
satisfies f

t

(p) 2 st�t

(p) for every p 2 P.
Similarly, let the (stationary optimal) policy correspondence s⇤ : P ◆ A be

defined by

s⇤(p) = argmax
a2A

⇥
r(p,a)+dÂ

p

02S(p) Q(p

0|p,a)V (p

0)
⇤
.

Note that x 2 s⇤(p) if and only if V (p) = V

x(p). From theorem 3.1, if there is no
deadline, a stationary plan is optimal if and only if the associated policy satisfies
f (p) 2 s⇤(p) for every p 2 P.

From corollary 3.1, s
k

(p) is a set of approximate best responses to the prob-
lem with no deadline, and the approximation gets arbitrarily better as k increases.

10



Optimal exploration D. Austen-Smith and C. Martinelli

Moreover, since the action set is finite, for every p there is a finite k such that
s

k

(p) = s⇤(p) for all k � k.
Since V and W

k

for k � 0 are continuous, the objective functions in the prob-
lems defining s⇤(p) and s

k

(p) are continuous. It follows from Berge’s (1963)
maximum theorem that the stationary optimal policy correspondence and the k-
optimal policy correspondences are nonempty and upper-semicontinuous.

The optimal policy correspondence partitions the state space P into regions in
which different actions are optimal. In particular, we let

R

k

= {p 2 P : s /2 s
k

(p)} and R = {p 2 P : s /2 s⇤(p)}

represent, respectively the regions in which research is strictly better that stopping
in the problem with k periods ahead and in the stationary problem. Naturally, the
research area is larger the longer the remaining time before the deadline.

Corollary 3.3. R

k

,R are nested, that is R1 ✓ R2 ✓ · · ·✓ R.

Proof. Note that for k � 1, p 2 R

k

if and only if there is some x such that

�c+dÂ
p

02S(p) Q(p

0|p,x)W
k�1(p

0)> max
x

0
p

x

0 ,

and similarly p 2 R if and only if there is some x such that

�c+dÂ
p

02S(p) Q(p

0|p,x)V (p

0)> max
x

0
p

x

0 .

From monotonicity (theorem 3.1), for every p 2 P, W0(p) W1(p)  · · ·  V (p).
The statement of the corollary follows.

Regardless of the horizon, the value function is bounded by the probability that
at least one of the alternative is good, that is 1�’

x

(1� p

x

). Hence, a simple upper
bound to R is given by

R ✓
�

p : �c+d(1�’
x

(1� p

x

))> p[1]
 
⇢ (0,1)n.

We may wonder about the relation between the exploration problem and the
bandit literature. We can treat the DM as choosing between n+1 arms, the first n

arms representing the decision to explore each of the alternatives and the reminder
arm representing the decision to stop and exploit the top alternative. The value of
exploring each alternative and the value of stopping are, of course, not independent.
The effect of exploring each alternative on the value of stopping depends not only
on the state of that alternative (that is, the beliefs of the decision-maker about
that alternative) but also on the states of the other alternatives. Thus, the value of
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exploring each alternative is not independent of the states of the other alternatives.
Per contra, an index formulation (see e.g. equation 2 in Bergemann and Välimäki
(2008)) would require writing the value of exploring each alternative as a function
of two variables, the state of the alternative and an auxiliary index representing
the value of other arms. In our problem, the value of the outside option to keep
exploring the alternative changes depending on the states of the other alternatives.

4 Optimal exploration with one period ahead

When there is only one period before the deadline, the DM’s problem is whether to
stop immediately and take the best alternative, or to investigate one of the alterna-
tives and then choose the best alternative given updated beliefs. In this section, we
show that, in the optimal plan one period before the deadline, the DM is indifferent
between investigating the top and the second alternative and will not investigate
any alternative inferior to the top two. We also provide necessary and sufficient
conditions for investigating any alternative to be optimal regardless of the number
of periods ahead.

For any vector p 2 [0,1]n we let (p[1], . . . , p[n]) be a permutation of p such that

p[1] � p[2] � · · ·� p[n].

For notational convenience, for given q define

w : [0,1]2 ! [0,1]; w(r,n) = q(r+n)� (2q�1)rn.

We have

Theorem 4.1.

W1(p) = max{p[1],�c+dw(p[1], p[2])}, R1 =

⇢
p : p[2] >

(1�dq)p[1] + c

dq�d(2q�1)p[1]

�

and p 2 R1 ) s1(p) = {x 2 X : p

x

� p[2]}.

Proof. In view of corollary 3.2, we can restrict our attention to vectors of prior
beliefs such that p1 � p2 � . . .� p

n

. The payoffs of researching alternatives 1 and
2 are, respectively,

W

1
1 (p) =�c+dq

+
1 (p)p

+
1 +dq

�
1 (p)max{p

�
1 , p2}

and
W

2
1 (p) =�c+dq

+
2 (p)max{p

+
2 , p1}+dq

�
2 (p)p1.

12
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If p2 > p

�
1 (equivalently, p

+
2 > p1), algebraic manipulation yields

W

1
1 (p) =W

2
1 (p) =�c+dw(p1, p2).

If instead p2  p

�
1 (equivalently, p

+
2  p1), we get

W

1
1 (p) =W

2
1 (p) =�c+dp1.

The payoff of researching any alternative x̃ such that p

x̃

< p2 is

W

x̃

1 (p) =�c+dq

+
x̃

(p)max{p

+
x̃

, p1}+dq

�
x̃

(p)p1.

If p

+
x̃

> p1, we get
W

x̃

1 (p) =�c+dw(p1, p

x̃

),

and if p

+
x̃

 p1, we get
W

x̃

1 (p) =�c+dp1.

Hence, if p

+
2 > p

+
x̃

> p1,

W

2
1 (p)�W

x̃

1 (p) = d(p2 � p

x̃

)(q� p1(2q�1))> 0;

if p

+
2 > p1 � p

+
x̃

,

W

2
1 (p)�W

x̃

1 (p) = d(w(p1, p2)� p1)> 0;

and if p1 � p

+
2 > p

+
x̃

,
W

2
1 (p)�W

x̃

1 (p) = 0.

From the preceding argument, researching the top two alternatives has the same
expected payoff. Moreover, researching an alternative with a belief smaller than
the top two is strictly dominated by researching either of the top two, except in
the case in which researching any alternative has payoff equal to �c+dp1. Since
�c+dp1 < p1, however, in this case the only optimal action is to stop. It follows
that it is never optimal to research an alternative with belief strictly below the top
two.

Now researching any of the top two alternatives is strictly better than stopping
if

W

1
1 (p) =W

2
1 (p) =�c+dw(p1, p2)> p1,

or equivalently

p2 >
(1�dq)p1 + c

dq�d(2q�1)p1
.

The statement of the theorem follows.

13
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We can now derive a necessary and sufficient condition for research to be op-
timal for some beliefs that holds regardless of whether there is or not a deadline,
and regardless of the remaining time before the deadline.

Corollary 4.1. For each k � 1, R

k

is nonempty if and only if

dq�1/2p
2d(q�1/2)

>
p

c,

and the same condition holds for R.

Proof. From theorem 4.1, R1 is nonempty if

(1�dq)p[1] + c

dq�d(2q�1)p[1]
< p[1]

or equivalently if
dp

2
[1](2q�1)� p[1](2dq�1)+ c < 0.

Minimizing the expression in the left-hand side with respect to p[1], we obtain that
there is p[1] such that the last inequality holds if and only if the upper bound on c

in the statement of the corollary is satisfied.
Note that if R1 is empty, then s1(p) 3 {s} for all p, which implies W1 = W0.

Recursively, it follows that W

k

= W0 for every k, and R

k

is empty for all k � 2.
From convergence (theorem 3.1), we get V = W0. But then R is empty as well.
Then the bound holds for R

k

for k � 1 and for R as well.

It is easy to check that increasing d relaxes the bound in the statement of the
corollary, and increasing q relaxes the bound if dq � 1/2. That is, quite intuitively,
exploration is optimal if patience and the quality of information are large enough
compared to the cost. In particular, c < 1/4 is required for exploration to be opti-
mal.

We can rewrite the condition on prior beliefs for research to be optimal from
theorem 4.1 as

q(p1 + p2 �2p1 p2)>
p[1] + c

d
� p1 p2.

It is easy to see that if R1 is nonempty, then it is strictly increasing in q (since
p1 + p2 > 2p1 p2 for 1 > p1 � p2 > 0) and in d, and strictly decreasing in c.

To illustrate theorem 4.1, suppose c = 0.002, d = 0.98, and n = 2. Figure 4
depicts the research area for increasing values of the quality of information, namely
q = 2/3 on top and q = 5/6 below, with p1 and p2 in the horizontal and vertical
axis, respectively. In both cases, the area in between the blue lines represents R1;
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Figure 4.1: Research areas for q = 2/3
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Figure 4.2: Research areas for q = 5/6
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the (partially overlapping) areas in green and orange represent additions to the
research area for longer horizons which will be explained in the next section.

The following corollary establishes some useful facts about R1 for future refer-
ence. Intuitively, it says that beliefs in R1 cannot be too far off the diagonal, in the
sense that bad news about the top alternative or good news about the second top
alternative necessarily change the order between the two top.

Corollary 4.2.

(i) p 2 R1 implies p

�
[1] < p[2], or equivalently, p

+
[2] > p[1].

(ii) For every p 2 P, p

[1]+ /2 R1.

(iii) p

[2]� 2 R1 implies p

�
[2] < p[3].

(iv) p

[2]� 2 R1 implies p

[1]� 2 R1.

5 Optimal exploration with two periods ahead

In this section we show that, two periods before the deadline, if it is optimal to
investigate any alternative, then either the DM prefers to investigate the top alter-
native and stop after good news, or prefers to investigate the second alternative and
stop after bad news, or is indifferent between the top two and expects to stop the
following period with probability one.

Define

Ŵ2(p) = q

+
[1](p)p

+
[1] +q

�
[1](p)(�c+dw(p[2],max{p

�
[1], p[3]}))

and
W̃2(p) = q

+
[2](p)(�c+dw(p[1], p

+
[2]))+q

�
[2](p)p[1].

These are the payoffs associated with investigating the first alternative and stopping
after good news, and with investigating the second alternative and stopping after
bad news. Obviously, W2(p) � W

[1]
2 (p) � Ŵ2(p) and W2(p) � W

[2]
2 (p) � W̃2(p).

Theorem 5.1 below can be summarized by the equation

W2(p) = max{W1(p),Ŵ2(p),W̃2(p)}.

Theorem 5.1 also provides the boundary between the regions in which Ŵ2(p)
and W̃2(p) are the optimal payoffs. In particular, for given q,d,c define

B : P ! ¬; B(p) = (1�d)p[1]p[2]� (1� p[1]� p[2])c

+dq

�
[1](p)q�[2](p)max{p[3]� p

�
[1],0}/(2q�1),
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where we let p[3] = 0 if n = 2. Note that B(p) > 0 if c = 0 or p[1] + p[2] � 1.
The theorem establishes that Ŵ2(p) � W̃2(p) if and only if B(p) � 0. It follows
that investigating the second alternative, with the expectation of investigating again
only after good news, can be optimal only if there is a fixed cost of investigation and
beliefs are sufficiently pessimistic. Intuitively, under these conditions, investigating
the second alternative is more likely to end exploration earlier than investigating
the top alternative, thus saving expected exploration costs: given c > 0 and p[1] +
p[2] < 1, the difference in the two probabilities of stopping is q

�
[2](p)�q

+
[1](p)> 0.

Note also that, even if the third alternative (if it exists) is not chosen optimally,
beliefs about the third alternative affect which of the top two alternatives is optimal
to investigate. This is because the third alternative may become relevant in the
following period in case of bad news about the top alternative. In particular, the
decision between investigating the top two alternatives cannot be settled optimally
without taking into account beliefs about other alternatives.

We have

Theorem 5.1. (i) If p

[1]�, p

[2]+ /2 R1, then W2(p) =W1(p), p 2 R2 , p 2 R1, and

p 2 R2 ) s2(p) = {x 2 X : p

x

� p[2]}.

(ii) If p

[1]� 2 R1 or p

[2]+ 2 R1, then

W2(p) =

⇢
max{p[1],Ŵ2(p)} if B(p)� 0
max{p[1],W̃2(p)} if B(p) 0

and

p 2 R2 ) s2(p) =

8
<

:

{x 2 X : p

x

= p[1]} if B(p)> 0
{x 2 X : p

x

� p[2]} if B(p) = 0
{x 2 X : p

x

= p[2]} if B(p)< 0
.

We can illustrate theorem 5.1 using figure 4. Recall that in the figure we assume
c = 0.002, d = 0.98, and n = 2, with q = 2/3 above and q = 5/6 below. In both
cases, the green area represents the initial beliefs in which it is optimal to investi-
gate the second alternative, stop after bad news, and investigate either alternative
after good news, so that W2(p) = W̃2(p). The orange area represents the initial be-
liefs in which it is optimal to investigate the top alternative, stop after good news,
and investigate either alternative after bad news, so that W2(p) = Ŵ2(p). The blue
area that does not overlap the green or orange areas represents initial beliefs such
that it is optimal to investigate either alternative and to stop afterwards regardless
of whether news are good or bad, so that W2(p) =W1(p) > p[1]. That is, the non-
overlapped blue areas illustrate case (i) in the theorem, while the orange and blue
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areas illustrate case (ii). Note that the orange and green areas are the beliefs such
that the expected utility of the decision maker increases with a larger horizon.

As figure 4 illustrates, if beliefs about the top two alternatives are nearly equal
then it is optimal to investigate only once; if beliefs are asymmetric and relatively
optimistic, it is optimal to investigate the top alternative with the expectation of
stopping after good news; and if beliefs are asymmetric and relatively pessimistic,
it is optimal to investigate the second alternative with the expectation of stopping
after bad news. Remarkably, the boundary between pessimistic and optimistic be-
liefs is independent of the quality of information if there are only two alternatives.

To prove the theorem, we proceed via a series of lemmata. We first claim that
any alternative below the top three according to initial beliefs is irrelevant for the
optimal plan.

Lemma 5.1. If p

x

< p[3], then x /2 s2(p), and moreover, p[x] = p

0
[x] for all x  3

implies W2(p) =W2(p

0).

Using corollary 3.2 and lemma 5.1, in the remainder of this section we sup-
pose without loss of generality n = 3 and p1 � p2 � p3. Lemma 5.2 establishes
that investigating the third alternative is dominated by other plans. (Beliefs about
the third alternative are not, however, irrelevant for deciding the optimal plan, as
discussed later on.)

Lemma 5.2. Either Ŵ2(p)�W

3
2 (p) (with strict inequality if p3 < p1), or W̃2(p)�

W

3
2 (p) (with strict inequality if p3 < p2), or p1 >W

3
2 (p).

Lemma 5.3 establishes that it cannot be optimal to investigate the second alter-
native if it is optimal to continue investigating after bad news.

Lemma 5.3. If p

2� 2 R1, then Ŵ2(p)�W

2
2 (p), with strict inequality if p1 > p2.

Lemma 5.4 tackles case (i) of the theorem, corresponding to the situation where
investigating leads to stopping the following period with certainty.

Lemma 5.4. If p

1�, p

2+ /2 R1 then W2(p) = W1(p), p 2 R2 , p 2 R1, and p 2
R2 ) s2(p) = {x 2 X : p

x

� p2}.

From the preceding arguments, if investigating does not lead to stopping with
certainty the following period, it must be that either the DM investigates the top
alternative and investigates again only after bad news, or the DM investigates the
second alternative and investigates again only after good news. Lemma 5.5 ranks
these two plans using the boundary condition B(p).

Lemma 5.5. Ŵ2(p)R W̃2(p) () B(p)R 0.
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Proof of theorem 5.1. From lemmata 5.1 and 5.2, we know that investigating any
alternative below the top two cannot be optimal. From corollary 4.2, we know that
investigating the top alternative leads to stopping after good news. From lemma
5.3, we know that investigating the second alternative, if optimal, leads to stop-
ping after bad news. Hence, the optimal plan is either stopping, or investigating
either alternative and stopping for sure as if there were only one period ahead, or
investigating the top alternative and investigating again only after bad news, or
investigating the second alternative and investigating again only after good news.
The case in which investigating is followed by stopping for sure is handled by
lemma 5.4. Lemma 5.5 ranks the last two plans.

We can check that both cases (i) and (ii) of the theorem are relevant for some
beliefs for any parameters d,q,c such that R1 6= /0. In particular, if beliefs about the
top two alternatives are close, and beliefs about the third alternative lag far behind,
or there is no third alternative, the optimal plan is to search only once either of the
top two alternatives and then stop. If instead beliefs about the second and the third
alternative are close enough, the optimal plan is to search the top alternative and
search again only after bad news.

Corollary 5.1. Consider p 2 R1. (i) If p[1] = p[2] and p

�
[2] � p[3], then W2(p) =

W1(p)> p[1]. (ii) If p[2] = p[3], then W2(p) = Ŵ2(p)>W1(p).

In sum, the previous two sections tell us that, with two or fewer periods before
the deadline: (i) optimal exploration is restricted to the top two alternatives; (ii)
starting from any initial beliefs such that it is optimal to explore, it is optimal
to stop the following period after either good news, bad news, or both; (iii) if it
is optimal to stop next period after good news but not after bad news, then it is
optimal to explore only the top alternative; (iv) if it is optimal to stop next period
after bad news but not after good news, then it is optimal to explore only the second
alternative; and (v) if it is optimal to stop next period after both good news and
bad news, then it is optimal to explore the top and the second top alternative (i.e.
the DM is indifferent). In the next section we show that (iii), (v), and a slightly
weaker version of (iv), hold for a longer horizon. The following section provides a
numerical example to establish that (i) and (ii) do not generalize.

6 Optimal exploration with three periods ahead

We focus in this section on boundary points, that is, beliefs such that it is optimal
to search and there is strictly positive probability of stopping the following period.
We show that with three periods ahead of the deadline, it is optimal to investigate
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either of the top two alternatives at boundary points. We show by counterexample
in the following section that this is not true for interior points, that is beliefs such
that it is optimal to investigate again after both good and bad news.

Theorem 6.1. If x 2 s3(p) and p

[x]+ /2 R2 or p

[x]� /2 R2, then p

x

� p[2].

We proceed by a series of lemmata.

Lemma 6.1. If x 2 s
k

(p) and p

[x]+, p

[x]� /2 R

k�1, then p

x

� p[2].

The proof follows from similar arguments in the previous two sections and
extends to any given horizon.

Lemma 6.2. If x 2 s3(p) and p

[x]� 2 R2, p

[x]+ /2 R2, then p

x

= p[1].

Lemma 6.3. If x 2 s3(p) and p

[x]+ 2 R2, p

[x]� /2 R2, then p

x

� p[2].

Theorem 6.1 follows straightforwardly from the three lemmata above.

7 An example with three periods ahead

With up to two periods before the deadline, the optimal plan limits exploration to
the top two alternatives and, starting from any initial beliefs such that it is opti-
mal to explore, to stop with positive probability the following period. That is, for
k  2, every search point in the space of beliefs is a boundary point. For longer
horizons, neither of these two properties hold. To illustrate this, suppose n = 3,
k = 3, d = 0.98, c = 0.002 and q = 0.7. We illustrate in figures 7.1 and 7.2 all
plans that are optimal for some beliefs p 2 (0,1)3. Plans are described by decision
trees, starting with the initial decision node on top. The symbol s indicates that the
optimal decision is to stop (and choose the alternative with the largest probability
of being high quality). The symbol [x] for x 2 {1,2,3} indicates that it is optimal
to investigate the first, the second, or the third alternative in terms of their proba-
bility of being high quality as updated at that node. Note that because of the arrival
of news about the alternatives, the order of the alternatives may change over the
decision tree. A branch going down to x� indicates the decision after bad news
about alternative x, while a branch going down to x+ indicates the decision after
good news about alternative x. When the decision is to stop after both good and
bad news, a unique branch follows a decision node.

The shortest possible optimal plan is to stop immediately, as in figure 7.1(a).
If it is optimal to explore at most one period ahead, as in figure 7.1(b), the optimal
plan is as described by theorem 4.1. That is, it is optimal to explore either of the
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Figure 7.1: Optimal plans with three-period deadline (k  2)
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(a) k = 0 (b) k = 1 (c) k = 2

top two alternatives with indifference between the two. If it is optimal to explore
at most two periods ahead, as in figure 7.1(c), the optimal plans are as described
by theorem 5.1. That is, it is optimal either to investigate the top alternative, and to
stop after good news, or to investigate the second alternative, and to stop after bad
news.

If under the optimal plan there may be exploration three periods ahead, there
is a variety of optimal plans, as described in figure 7.2. The first row of plans
corresponds to boundary points: there is a positive probability of stopping after
every investigation decision along each decision tree. In agreement with theorem
6.1, only the top two alternatives can be optimally investigated at boundary points.
In particular, in agreement with lemma 6.2, if good news lead to stop, it is optimal
to investigate the top alternative. The other rows correspond to plans such that
after the first investigation decision there is probability one of investigating again.
In particular, the last row corresponds to a plan such that it is optimal to explore
indifferently either of the three alternatives.

In table 7.1 we have tabulated the frequency with which of the possible plans
is optimal, under the assumption that the initial vector of beliefs p is distributed
uniformly over the cube (0,1)3. We have grouped the plans according to initial
action and maximum length of exploration. An empty cell indicates impossibility.

Table 7.1: Frequency of optimal plans (percentage)
s [1] [2] [1] or [2] [1], [2] or [3]

k = 0 50.7620
k = 1 0.3712
k = 2 4.7606 0.1552 0.0000
k = 3 32.7538 1.3764 9.7060 0.1148
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The most populated among the exploration cells in table 7.1 corresponds to
plans with the maximum possible length of three periods and starting with inves-
tigating the top alternative. Among these plans, and among all plans involving
exploration, the most frequent is the first plan to the left in the top row of figure
7.2, with a frequency of 31.8532%. It corresponds to investigating the top alter-
native, stopping after good news, and investigating again the top alternative after
bad news, in which case good news lead to stop and bad news lead to investigate
again. The second most populated cell corresponds to plans with the maximum
length in which it is indifferent to start with the top or the second top alternative.
Among these plans, the most frequent is the first plan to the left in the fourth row
of figure 7.2, with a frequency of 8.7496%. It corresponds to investigating the top
alternative after both good news and bad news, and then stopping after good news
and investigating again after bad news. The third most populated cell corresponds
to the third plan to the left in figure 7.1. It requires to investigate the top alterna-
tive, stop after good news, and investigate either of the top two after bad news. For
the parameters chosen, then, under a uniform distribution of initial beliefs, stop-
ping most likely occurs after good news about the top alternative, except near the
deadline.

8 Conclusions

Sequential experimentation problems are ubiquitous in economics and politics among
other fields (e.g. biology), and have received a great deal of attention over the years.
The current paper studies a simple experimentation problem, focusing on the se-
quence of exploration, or alternatives to research, prior to making a final choice
from among the available alternatives. Conditional on being chosen, any alterna-
tive from a given available set yields a fixed per period payoff of either one with
some (interior) probability, or zero with the complementary probability. In any one
period, a decision maker (DM) either chooses either to research an alternative at a
fixed cost or make a final choice of an available alternative. Research yields only
an informative but noisy signal of the value of the alternative under consideration
(either “good news” signaling a positive payoff, or “bad news” signaling a zero
payoff); payoffs from any alternative accrue only if the DM stops exploration and
chooses the alternative. Exploring any given alternative repeatedly is feasible but
resuming exploration after making a choice is prohibitively costly.

Save for characterizing when it is optimal to research (corollary 4.1), identi-
fying the optimal policy in general seems analytically intractable. The compli-
cation here is that the (endogenous) value of exploring any alternative in a given
period is not independent of the values of other alternatives, despite payoff val-
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ues of the feasible alternatives being statistically independent. There is thus no
available Gittins-type of index theorem available. A characterization of the opti-
mal policy function at boundary points,4 however, is available for when there are
at most three remaining search periods (k  3). In particular, all research points are
boundary points when there are at most two remaining search periods (theorems
4.1 and 5.1), although this is not true for (k � 3) (figure 7.2).

In any period, order alternatives by decreasing likelihood that they yield a pay-
off of one. Then the main results for when there are at most three available search
periods are easily summarized. Assume the optimal plan is followed in the current
period. If it is optimal to investigate an alternative x now but to stop next period
after

1. both good news and bad news, then x must be one of the top two alternatives
for any number of search periods (k � 1), with the DM being indifferent
between the top and second ranked alternatives when k = 1;

2. good news but not after bad news, then x must be the top ranked alternative
if k 2 {2,3};

3. bad news but not good news, then x must be one of the top two alternatives
when k = 3; when k = 2, x must be the second best alternative if beliefs are
‘sufficiently pessimistic’ and the top alternative if beliefs are ‘sufficiently
optimistic.’

(1) is a general property of optimal exploration regardless of the search horizon.
(2) and (3) essentially say that, when there are at most three remaining search
periods, receiving good news about an alternative implies it is optimal either to
stop and choose that alternative, or to explore it further in the next period; receiving
bad news about the alternative implies it is optimal either to stop and take the best
alternative, or to explore that best alternative in the next period. These properties
seem intuitive and we conjecture they generalize to the arbitrary search horizon
case.

Two main motivations for the model are the nest-searches of eusocial insects
(see e.g. Seeley, 2010) and, closer to home, searching for the best policy to imple-
ment some given collective goal. In this latter case, the model can be interpreted
as a common value committee deliberation, whereby the committee engages in re-
searching alternatives prior to reaching a decision. Natural extensions in this con-
text include relaxing the common value assumption to some extent, for example by
having individuals independently choose whether to pay the fixed cost to explore

4That is, beliefs such that it is optimal to research and there is strictly positive probability of
stopping the following period.
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an alternative in any period (presuming only one such search per period) and re-
porting the findings back to the committee. In this case, reporting signals truthfully
is individually rational but there is clearly a free-rider problem in regard to search-
ing. We expect search will stop too soon relative to the optimal plan. Similarly, if
discount rates are individually specific and the committee votes over when to stop
search, the optimality of search depends on both the distribution of discount rates
among individuals and the distribution of likelihoods that alternatives have positive
value in any period (see Chan et al., 2017). We leave such extensions for another
time.

Appendix: Additional proofs

Proof of corollary 4.2:

Suppose without loss of generality p1 � p2 � . . . � p

n

. For part (i), from
theorem 4.1, if p 2 R1 then W

1
1 (p) =W

2
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�
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+
1 )
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For part (iii), suppose p

�
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�
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�
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�
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dq�d(2q�1)p2
,

which is weaker than the condition above in either case. ⇤
Proof of lemma 5.1:

From theorem 4.1, we know that p[1] = p

0
[1], p[2] = p

0
[2] implies W1(p) =W1(p

0).
For any alternative x, we have
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2 (p) =�c+d(q+
x

W1(p

+
x

, p�x

)+q

�
x

W1(p

�
x

, p�x

)).

Note that p

x̂

= p[3] > p

x

implies q

+
x̂
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implies x /2 s2(p). Hence, x will not be in the top two alternatives the following
period in the optimal plan. It follows that it does not affect the expected utility of
the DM. ⇤
Proof of lemma 5.2:

It is easy to see that if p3  p

�
2 (equivalently, p

+
3  p2), then investigating the

third alternative is dominated. We suppose henceforth that p3 > p

�
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with strict inequality if p2 > p3.
Finally, suppose p

3�, p
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3
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Proof of lemma 5.3:

From corollary 4.2(iii), we know that p

2� 2 R1 implies p3 > p

�
2 . Note that

then W

2
2 (p

2�) =�c+dw(p1, p3). Suppose first that p

2+ 2 R1. Then:
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Proof of lemma 5.4:
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Proof of lemma 5.5:

Suppose p
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1 � p3. (The third alternative is irrelevant.) Then
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as desired. ⇤
Proof of corollary 5.1: For part (i), note that, given the premise, p
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(by corollary 4.2(ii)), and p
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[2]�
[1] = p[1]
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theorem 5.1(ii). ⇤
Proof of lemma 6.2:

We proceed by contradiction. Assume without loss of generality that p1 =
max

y2X

p
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, and suppose there is some p such that it is optimal to explore some
alternative x with p

x

< p1, and moreover next period it is optimal to stop after
good news but not after bad news. If p1 � p

+
x

, it cannot be optimal to stop after
good news about x but not after bad news, since the payoff of exploring is larger
after good news, and after bad news alternative 1 is still available. Hence p

+
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> p1
and the plan’s payoff is

q

+
x

p

+
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�
x
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Since there is exploration at p

x�, we have W2(p

x�) � p1. Let the payoff of the
optimal plan at p 2 P conditional on the true value of alternatives 1 and x be
given by u(p|w1,wx

), and let u(p

x�|1,1) = v, u(p

x�|0,0) = w, u(p

x�|0,1) = r

and u(p

x�|1,0) = t. Thus, W2(p

x�) = p1 p

x
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)w+(1� p1)p

x
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p1(1� p

x

)t � p1. We claim that r � 0. It is simple to show that W2(p

x�)� p1 and
r � w imply r � 0; we prove below that r � w.

Now consider switching alternatives x and 1 at beliefs p and any posterior
beliefs; this plan payoff is

q

+
1 p

+
1 +q

�
1 W̃2(p

1�),

where W̃2(p

1�) = p1 p

x
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)w+ (1� p1)p

x

t + p1(1� p

x

)r. The
optimal plan and this deviation have the same expected payoffs, qw and q+(1�q)v
in states of the world (w1,wx

) = (0,0),(1,1), respectively. Using the states of the
world (w1,wx

) = (1,0),(0,1), we get

(q+1 p

+
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x

)(q(1� t)+(1�q)r)> 0,

where we use t < 1 and r � 0. But this contradicts x being optimal.
We still have to prove that r � w. More generally, for any pair of alternatives

y,x, any p 2 P and any horizon k, let the payoff of the optimal plan at p conditional
on the true value of alternatives x and y be given by u

k

(p|w
y

,w
x

). We claim that,
for k  2,

u

k

(p|1,0)� u

k

(p|0,0).

The result is immediate if the optimal decision at p with horizon k is to stop. The
result is also easy to establish for k = 1. Consider the case k = 2. If the decision is
to investigate any alternative z 6= y,x, we have

u2(p|1,0)�u2(p|0,0)
= q

+(p

z

)(u1(p

z+|1,0)�u1(p

z+|0,0))
+q

�(p

z
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z�|0,0))� 0.

The desired result from u1(p|1,0) � u1(p|0,0). The argument is similar if the

29



Optimal exploration D. Austen-Smith and C. Martinelli

decision is to investigate x. If the decision instead is to investigate y, we have

u2(p|1,0)�u2(p|0,0)
= (qu1(p

y+|1,0)+(1�q)u1(p

y�|1,0))
� (qu1(p

y�|0,0)+(1�q)u1(p

y+|0,0)). (3)

Since we are investigating y and we are in k = 2, we must have either p

y

= p[1] or
p

y

= p[2] < p[1]. In either situation, we do not need to consider the case in which
the optimal policy is to stop after both good and bad news, since then u2(p|1,0)�
u2(p|0,0) = u1(p|1,0)�u1(p|0,0)� 0.

Suppose first that p

y

= p[1]. Then equation 3 becomes

u2(p|1,0)�u2(p|0,0)
= q+(1�q)u1(p

y�|1,0)�qu1(p

y�|0,0)
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y�|0,0))� (2q�1)u1(p

y�|0,0)
> q� (2q�1)> 0,

where we use 1 > u1(p|1,0)� u1(p|0,0) for all p.
Suppose instead that p

y

= p[2] < p[1]. If p

x

< p[1], equation 3 becomes

u2(p|1,0)�u2(p|0,0)
= qu1(p

y+|1,0)+(1�q)p[1]�qp[1]� (1�q)u1(p

y+|0,0)
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We have u1(p

y+|1,0)� p[1] =�c+d(q+(1�q)p[1])� p[1] which, using the char-
acterization of R1 in theorem 4.1, is positive given p

y+ 2 R1. Similarly p[1] �
u1(p

y+|0,0) = p[1] + c�d(qp[1])> 0.
Finally, if p

x

= p[1], equation 3 becomes

u2(p|1,0)�u2(p|0,0) = qu1(p

y+|1,0)� (1�q)u1(p

y+|0,0)).

If the DM searches y, we get

u2(p|1,0)�u2(p|0,0) = q(�c+dq)+(1�q)c.

From corollary 4.1, we have c < 1/4 and dq > 1/2, so the above expression is
positive. Similarly, if the DM searches x, we get

u2(p|1,0)�u2(p|0,0) = q > 0,

which finishes the proof. ⇤
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Proof of lemma 6.3:

As in the previous proof, we proceed by contradiction. Assume without loss of
generality that p1 = p[1] and p[2] = p2, and suppose there is some p such that it is
optimal to explore some alternative x with p

x

< p2, and moreover next period it is
optimal to stop after bad news but not after good news. The plan’s payoff is

q

+
x

W2(p

x+)+q

�
x

p1.

Let the payoff of the optimal plan at p 2 P conditional on the true value of alter-
natives 2 and x be given by u(p|w2,wx

), and let u(p
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Now consider switching alternatives x and 2 at beliefs p and any posterior
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q

+
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where W̃2(p
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)r. The
optimal plan and this deviation have the same expected payoffs, (1�q)w+qp1 and
qv+(1� q)p1 in states of the world (w2,wx

) = (0,0),(1,1), respectively. Using
the states of the world (w2,wx

) = (1,0),(0,1), we get
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which is positive if r > t. We prove below that either r > t, which contradicts x

being optimal, or r = t so that switching alternatives x and 2 leads to the same
payoff, but the plan after the switch is itself suboptimal, which contradicts x being
optimal.

Suppose first that 1) p

+
x

� p1. 1.1) Suppose the decision at p

+
x

with two periods
ahead is to stop after both good and bad news. In that case it is optimal to explore
either x or 1. If we explore x we get r = q+(1� q)p1 > qp1 = t. If instead we
explore 1 we get r = qp1+q

�
1 > qp1 = t. 1.2) Suppose the decision at p

+
x

with two
periods ahead is to stop after good news and search again after bad news. In this
case it is optimal to explore x. We get r = q+(1�q)W1(p) > qW1(p) = t, where
p is the original belief vector. 1.3) Suppose the decision at p

+
x

with two periods
ahead is to stop after bad news and search again after good news. In that case it is
optimal to explore 1. We get r = q

�
1 +q

+
1 u1(p

1+,x+|0,1) and t = q

+
1 u1(p

1+,x+|1,0),
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where r > t since u1(p

1+,x+|0,1) > u1(p

1+,x+|1,0) regardless of whether the DM
explore 1 or x at p

1+,x+ with one period ahead.
Suppose 2) p2 < p

+
x

< p1. 2.1) If the decision at p

+
x

with two periods ahead
is to stop after both good and bad news, we get the same result as in the previous
paragraph.

2.2) Suppose the decision at p

+
x

with two periods ahead is to stop after good
news and search again after bad news. In this case it is optimal to explore 1. We
get r = qp1 +(1� q)u1(p

1�,x+|0,1) and t = qp1 +(1� q)u1(p

1�,x+|1,0). If the
DM explores x or 1 at p

1�,x+ with one period ahead we get the desired result; if the
DM explores 2 we get r = t so that switching alternatives x and 2 leads to the same
payoff. Note that after switching the DM explores x at p

1�,2+, which is suboptimal
since by the premise p

x

< p

�
1 and by theorem 4.1 it is not optimal to explore third

alternatives with one period ahead.
2.3) Suppose the decision at p

+
x

with two periods ahead is to stop after bad
news and search again after good news. In that case it is optimal to explore x.
We get r = qu1(p

x++|0,1)+ (1� q)p1 and t = (1� q)u1(p

x++|1,0)+ qp1. If we
explore 1 at p

x++ with one period ahead, we get u1(p

x++|0,1) = qp1+(1�q) and
u1(p

x++|1,0) = qp1 which yields r > t. If we explore x at p

x++ with one period
ahead, we get u1(p

x++|0,1) = q+(1�q)p1 and u1(p

x++|1,0) = qp1 which yields
r > t.

3) Suppose p

+
x

 p2. 3.1) It cannot be the case that the decision at p

+
x

with
two periods ahead is to stop after both good and bad news since then positive news
about x is irrelevant and we can explore either 1 or 2 three periods ahead and stop
after both good and bad news.

3.2) Suppose the decision at p

+
x

with two periods ahead is to stop after good
news and search again after bad news. In this case it is optimal to explore 1. We
get r = qp1+(1�q)u1(p

1�,x+|0,1) and t = qp1+(1�q)u1(p

1�,x+|1,0). The DM
cannot explore optimally x at p

1�,x+ with one period ahead since p

+ < p2. If the
DM explores 1 we get r = qp1 + (1� q)(qp1 + q

�
1 ) > qp1 + (1� q)qp1. If the

DM explores 2 at p

1�,x+ with one period ahead, we get r = t so that switching
alternatives x and 2 leads to the same payoff. Note that after switching the DM
explores x at p

1�,2+, which is suboptimal since by the premise p

x

< p

�
1 and by

theorem 4.1 it is not optimal to explore third alternatives with one period ahead.
3.3) Suppose the decision at p

+
x

with two periods ahead is to stop after bad
news and search again after good news. In that case it is optimal to explore 2. But
then after bad news we choose 1 and after good news we explore either 1 or 2, so
searching x in the first place cannot be optimal. ⇤
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