
PSY757 Advanced Topics in Statistical Analysis: Bayesian Statistics 

Spring 2012 

Time:    4:30 pm – 7:10 pm Mondays 
Classroom:   Innovation Hall 209 
 
Instructor of Record: James Thompson 
   2056 David King Hall 
                  Ph: 703-993-9356 
                  Email: jthompsz@gmu.edu 
   (please remember to always use your gmu account) 
Co-Instructor:  Patrick McKnight 
Office Hours:  3.00pm - 4.00pm Mon or by appt.  
 
Objectives: 

This Advanced Topics in Statistical Analysis class will provide an introduction to Bayesian statistical 
analysis for use in the social sciences. Patrick McKnight and I co-teach this class and alternate primary 
responsibilities each year. We will provide an introduction to probability theory and Bayes theorem, and 
then move on to Bayesian statistical analysis. The overall goal of this class is to provide you with enough 
background so that you understand the principles behind Bayesian analysis, and to provide practical 
information about how you can apply these principles to examine questions relevant to the social 
sciences. We will spend a considerable amount of time dedicated to "hands on" examples and exercises. 
These examples and exercises will be performed in the statistical software package, R (see 
prerequisites). We will not spend very much time presenting the argument in favor of why you would to 
use Bayesian statistics, as we will assume that you have shown at least some appreciation of this simply 
by signing up for the class. We will, however, include some supplementary readings and materials for 
those interested in such issues. 

Prerequisites. 

Due to the nature of the material and the relevance to research, we assume all students will have 
successfully completed the introductory graduate course sequence in statistics (PSYC 611/612 or its 
equivalent). Some understanding of the basics of probability theory, such as what a distribution is, the 
difference between discrete and continuous distributions, and what is a probability density, will be 
expected (see Before You Start This Class). We do not intend to cover in great detail the statistical 
models underlying Frequentist models so you may want to reread some material on ANOVA and 
regression if you feel weak in those areas. In addition, this is not a math class. Understanding of basic 
linear algebra, and some familiarity with integral notion is sufficient. 

Required Readings: 



Kruschke, J.K. (2010). Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Burlington, MA: 
Academic Press. 

Additional Readings: 

Gonick, L. and Smith, W. (1993). The cartoon guide to statistics. New York: Harper Collins. 
Albert, J. (2009). Bayesian computation with R (2nd Ed.). New York: Springer. 
Berry, D.A. (1995). Statistics: A Bayesian Perspective. Belmont, CA: Duxbury Press. 
Lynch, S.M. (2007). Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. New 
York: Springer. 
 
Before You Start This Class: 

If you feel you might be a little rusty on the basic concepts of statistics and probability, then I highly 
recommend the book by Gonick and Smith (1993). A slightly more advanced introduction, including an 
introduction to Bayes theorem, can be found in Berry (1995), and I encourage everyone to read at least 
chapters 4 to 8 of this book. You will be expected to have both R and RBugs installed and working on 
your computer* before the first class. We will begin working on examples in the first week and you will 
need to have R up and running before then. 

*If you do not have access to a laptop you must make arrangements with the instructor prior to the first 
class. 

Assessment: 

Assessment will be based on performance of homework assignments assigned each week, as well as in-
class exercises and discussions. There will be no exams or essays. All the assignments are mandatory, 
and penalties will apply for late work unless you have a legitimate excuse. The material covered and 
assignments are cumulative, so it is important that you keep up. If you are going to be late with an 
assignment, you must notify the instructor prior to its due date.  

Attendance Policy:  

Although you will not be graded on attendance, this is a graduate level course and I expect to see you in 
class each week. 

GMU Honor Code: 

George Mason University has a code of Honor that each of you accepts by enrolling as a student.  You 
should read and become familiar with this code at 
http://mason.gmu.edu/%7Emontecin/plagiarism.htm. The expectation is that all of the work you do for 
this class will be the work of one individual. However, you are fully encouraged to discuss the readings 
and topics raised in this class with your fellow students. 

Disabilities: 

http://mason.gmu.edu/~montecin/plagiarism.htm�


If you are a student with a disability and you need academic accommodations, please see me and 
contact the Disability Resource Center (DRC) at 703-993-2474.  All academic accommodations must be 
arranged through that office. 

Grades: 
Total 100 points, letter grades as follows: 
A: 90-100   B-: 77-79 
A-: 87-89   C: 70-76 
B+: 84-86   F: 0-69 
B: 80-83 
 
Important Dates 

Last day to drop without penalty January 31; Last day to drop February 24; Spring Break March 12-18. 

 

Schedule of Classes 

(Schedule is subject to change, changes announced in class or via email) 

Week 1. Probability, Conditional Probability, and Bayes Rule. 

 Kruschke (2010) Chapters 2-4. 

 Key points: Models of observation and models of belief; The sum of all probabilities 
equals one; Conditional probabilities are simply the probability of an event, given that 
we know another event is true; Posterior is prior beliefs updated with evidence; 
Contribution of prior and evidence to posterior depends on their respective precisions.  

Week 2. An Example with a Single Binomial Distribution: Analytic & Grid Approximation 
Approaches. 

 Kruschke (2010) Chapters 5 & 6 

 Key points: For a simple example such as a coin-toss, and a beta distribution for a prior, 
we can use a mathematical formula to calculate the posterior; For non-beta priors and a 
single parameter model, discretizing continuous priors is a simple way to approximate 
the posterior. 

Week 3. An Example with a Binomial Distribution: The Metropolis Algorithm 

 Kruschke (2010) Chapter 7 

 Key points: For multiple parameter models, we need to approximate the posterior by 
randomly sampling; The Metropolis algorithm is a heuristic for generating random 
samples from a target distribution; In MCMC, Monte Carlo refers to random sampling, 



like rolling die at the casino; Markov Chain refers to each successive step in the sampling 
algorithm being independent of all previous steps.  

Week 4. An Example with Two Binomial Distributions: Gibbs Sampling 

 Kruschke (2010) Chapter 8 

 Key points: The Metropolis algorithm can be inefficient under certain circumstances; 
Gibbs sampling allows us to sample multiple parameter models by stepping though the 
resampling one parameter at a time; To use Gibbs sampling, it must be possible to 
generate samples from the posterior conditioned on each individual parameter; When it 
can be applied, Gibbs sampling is more efficient than Metropolis. 

Week 5. Hierarchical Models I: Introducing Hyperparameters 

 Kruschke (2010) Chapter 9 

 Key points: Hyperparameters describe dependencies between other parameters; 
Evidence affects our beliefs about hyperparameters, and our beliefs about the 
dependence of parameters on the hyperparameters; If multiple parameters are 
dependent on a single hyperparameter, evidence that speaks to one parameter can 
affect the other parameters, reducing uncertainty. 

Week 6. Hierarchical Models II: Model Comparison 

 Kruschke (2010) Chapter 10 

 Key points: Hierarchical modeling allows for model comparison; One can think of 
different models being dependent on a categorical hyperparameter; Different models 
can have different numbers of parameters; Nested model comparison is a useful way of 
testing models, but care is needed in the specification of models; Bayesian model 
comparison is especially useful for non-nested models.  

Week 7. NHST, Testing Point Hypothesis 

 Kruschke (2010) Chapters 11 & 12 

 Key points: The outcome of null hypothesis significance testing (NHST) is dependent on 
the intentions of the experimenter, as it depends on the space of all possible 
(unobserved) data; Bayesian analysis requires the expression of prior knowledge; The 
highest density interval (HDI) or the range of practical equivalence (ROPE) can be used 
for making inferences; Model comparison can also be used for making inferences.   

Week 8. Revision of the Generalized Linear Model 

 Kruschke (2010) Chapter 14 



 Key points: A GLM consists of predictor and predicted variables; These variables can be 
nominal, ordinal, or metric; Depending on whether predictor and/or predicted variables 
are nominal, ordinal, or metric, we can perform the equivalent of t-tests, simple and 
multiple regression, ANOVA, logistic regression, etc, etc, etc. 

Week 9. Single Group Means, Precision, Repeated Measures. 

 Kruschke (2010) Chapter 15 

 Key points: For a metric predicted variable from a single group, we can estimate the 
posterior mean using a normal likelihood function; The posterior mean is the weighted 
sum of the prior mean and the data, with weighting from the relative precisions; For a 
normal likelihood, the prior mean is usually given a normal distribution and prior 
precision a gamma distribution; However, BUGS can handle arbitrary priors.     

Week 10. Simple Linear Regression 

 Kruschke (2010) Chapter 16 

 Key points: A simple linear regression consists of a metric predictor and a metric 
predicted variable; We can use a hierarchical model to estimate the posterior 
distributions of the intercept, slope, and residuals; Priors are given for each of the three 
parameters, usually normal for intercept and slope and gamma for residuals; Using 
MCMC to estimate posteriors works best if data are standardized; HDI or ROPE, based 
on the posterior distribution, can be used for inferences about the slope.    

Week 11. Multiple Linear Regression 

 Kruschke (2010) Chapter 17 

 Key points: Simple regression can be easily extended to include multiple metric 
predictors; Bayesian multiple regression copes well with correlated predictors; When 
testing a large number of predictors, one can set up a hierarchical model with a prior for 
a hyperparameter describing the relations between predictor regression coefficients.  

Week 12. Oneway ANOVA 

 Kruschke (2010) Chapter 18 

 Key points: Use ANOVA when the predictor variable is nominal and predicted variable is 
metric; The ANOVA model includes predictors that have one component per predictor 
level; Coefficients indicate the size of predicted variable deflections when predictor goes 
from zero to one; Again, a hierarchical model is used with a hyperprior over the 
distribution of deflections; We allow the precision of the deflections to be determined 
by the data. 



 

Week 13. Multifactor ANOVA 

 Kruschke (2010) Chapter 19  

 Key points: Multiple factors and their interactions can be incorporated into an ANOVA 
model; hyperpriors and their distributions are specified for each factor and interaction; 
Metric and nominal predictors can be included in ANCOVA models; Repeated measures 
models can be designed with varying complexity, with the simplest modeling the 
influence of subjects on the baseline. 

Week 14. Revision/Catch Up/Outstanding Questions. 

 

 


